Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313531758> ?p ?o ?g. }
- W4313531758 endingPage "811" @default.
- W4313531758 startingPage "802" @default.
- W4313531758 abstract "Cell misuse and cross-contamination can affect the accuracy of cell research results and result in wasted time, manpower and material resources. Thus, cell line identification is important and necessary. At present, the commonly used cell line identification methods need cell staining and culturing. There is therefore a need to develop a new method for the rapid and automated identification of cell lines. Raman spectroscopy has become one of the emerging techniques in the field of microbial identification, with the advantages of being rapid and noninvasive and providing molecular information for biological samples, which is beneficial in the identification of cell lines. In this study, we built a library of Raman spectra for gastric mucosal epithelial cell lines GES-1 and gastric cancer cell lines, such as AGS, BGC-823, HGC-27, MKN-45, MKN-74 and SNU-16. Five spectral datasets were constructed using spectral data and included the full spectrum, fingerprint region, high-wavelength number region and Raman background of Raman spectra. A stacking ensemble learning model, SL-Raman, was built for different datasets, and gastric cancer cell identification was achieved. For the gastric cancer cells we studied, the differentiation accuracy of SL-Raman was 100% for one of the gastric cancer cells and 100% for six of the gastric cancer cells. Additionally, the separation accuracy for two gastric cancer cells with different degrees of differentiation was 100%. These results demonstrate that Raman spectroscopy combined with SL-Raman may be a new method for the rapid and accurate identification of gastric cancer. In addition, the accuracy of 94.38% for classifying Raman spectral background data using machine learning demonstrates that the Raman spectral background contains some useful spectral features. These data have been overlooked in previous studies." @default.
- W4313531758 created "2023-01-06" @default.
- W4313531758 creator A5000531090 @default.
- W4313531758 creator A5005730128 @default.
- W4313531758 creator A5014592745 @default.
- W4313531758 creator A5023494462 @default.
- W4313531758 creator A5034544317 @default.
- W4313531758 creator A5055435419 @default.
- W4313531758 creator A5079594267 @default.
- W4313531758 creator A5085956552 @default.
- W4313531758 creator A5087008770 @default.
- W4313531758 creator A5088486032 @default.
- W4313531758 creator A5090815103 @default.
- W4313531758 date "2023-01-01" @default.
- W4313531758 modified "2023-10-16" @default.
- W4313531758 title "Building an ensemble learning model for gastric cancer cell line classification via rapid raman spectroscopy" @default.
- W4313531758 cites W1541290060 @default.
- W4313531758 cites W1970710602 @default.
- W4313531758 cites W1973113332 @default.
- W4313531758 cites W1977182656 @default.
- W4313531758 cites W1979775122 @default.
- W4313531758 cites W1985900918 @default.
- W4313531758 cites W1988280812 @default.
- W4313531758 cites W2000738544 @default.
- W4313531758 cites W2002896160 @default.
- W4313531758 cites W2016045532 @default.
- W4313531758 cites W2016365402 @default.
- W4313531758 cites W2048719990 @default.
- W4313531758 cites W2051434104 @default.
- W4313531758 cites W2072443063 @default.
- W4313531758 cites W2078895698 @default.
- W4313531758 cites W2087359793 @default.
- W4313531758 cites W2089468765 @default.
- W4313531758 cites W2089842689 @default.
- W4313531758 cites W2093166050 @default.
- W4313531758 cites W2097358067 @default.
- W4313531758 cites W2124569930 @default.
- W4313531758 cites W2132590101 @default.
- W4313531758 cites W2134285663 @default.
- W4313531758 cites W2135293965 @default.
- W4313531758 cites W2135405268 @default.
- W4313531758 cites W2164563724 @default.
- W4313531758 cites W2168840959 @default.
- W4313531758 cites W2169589085 @default.
- W4313531758 cites W2287345391 @default.
- W4313531758 cites W2326263080 @default.
- W4313531758 cites W2485072392 @default.
- W4313531758 cites W2527701814 @default.
- W4313531758 cites W2805849778 @default.
- W4313531758 cites W2885907994 @default.
- W4313531758 cites W2941165302 @default.
- W4313531758 cites W2952266823 @default.
- W4313531758 cites W3080646488 @default.
- W4313531758 cites W3091527610 @default.
- W4313531758 cites W3096328896 @default.
- W4313531758 cites W3111050133 @default.
- W4313531758 cites W3134902072 @default.
- W4313531758 cites W3149839747 @default.
- W4313531758 cites W3166199241 @default.
- W4313531758 cites W3178589605 @default.
- W4313531758 cites W3194584916 @default.
- W4313531758 cites W4220791196 @default.
- W4313531758 cites W4220916388 @default.
- W4313531758 cites W4281622783 @default.
- W4313531758 cites W4285088978 @default.
- W4313531758 cites W4306407450 @default.
- W4313531758 cites W4310465263 @default.
- W4313531758 doi "https://doi.org/10.1016/j.csbj.2022.12.050" @default.
- W4313531758 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36698976" @default.
- W4313531758 hasPublicationYear "2023" @default.
- W4313531758 type Work @default.
- W4313531758 citedByCount "3" @default.
- W4313531758 countsByYear W43135317582023 @default.
- W4313531758 crossrefType "journal-article" @default.
- W4313531758 hasAuthorship W4313531758A5000531090 @default.
- W4313531758 hasAuthorship W4313531758A5005730128 @default.
- W4313531758 hasAuthorship W4313531758A5014592745 @default.
- W4313531758 hasAuthorship W4313531758A5023494462 @default.
- W4313531758 hasAuthorship W4313531758A5034544317 @default.
- W4313531758 hasAuthorship W4313531758A5055435419 @default.
- W4313531758 hasAuthorship W4313531758A5079594267 @default.
- W4313531758 hasAuthorship W4313531758A5085956552 @default.
- W4313531758 hasAuthorship W4313531758A5087008770 @default.
- W4313531758 hasAuthorship W4313531758A5088486032 @default.
- W4313531758 hasAuthorship W4313531758A5090815103 @default.
- W4313531758 hasBestOaLocation W43135317581 @default.
- W4313531758 hasConcept C116834253 @default.
- W4313531758 hasConcept C120665830 @default.
- W4313531758 hasConcept C121332964 @default.
- W4313531758 hasConcept C121608353 @default.
- W4313531758 hasConcept C1491633281 @default.
- W4313531758 hasConcept C185592680 @default.
- W4313531758 hasConcept C2994372470 @default.
- W4313531758 hasConcept C40003534 @default.
- W4313531758 hasConcept C41008148 @default.
- W4313531758 hasConcept C54355233 @default.
- W4313531758 hasConcept C55493867 @default.
- W4313531758 hasConcept C59822182 @default.