Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313532072> ?p ?o ?g. }
- W4313532072 endingPage "154" @default.
- W4313532072 startingPage "141" @default.
- W4313532072 abstract "For complex engineering systems, such as trains, planes, and offshore oil platforms, load spectra are cornerstone of their safety designs and fault diagnoses. We demonstrate in this study that well-orchestrated machine learning modeling, in combination with limited experimental data, can effectively reproduce the high-fidelity, history-dependent load spectra in critical sites of complex engineering systems, such as high-speed trains. To meet the need for in-service monitoring, we propose a segmentation and randomization strategy for long-duration historical data processing to improve the accuracy of our data-driven model for long-term load-time history prediction. Results showed the existence of an optimal length of subsequence, which is associated with the characteristic dissipation time of the dynamic system. Moreover, the data-driven model exhibits an excellent generalization capability to accurately predict the load spectra for different levels of passenger-dedicated lines. In brief, we pave the way, from data preprocessing, hyperparameter selection, to learning strategy, on how to capture the nonlinear responses of such a dynamic system, which may then provide a unifying framework that could enable the synergy of computation and in-field experiments to save orders of magnitude of expenses for the load spectrum monitoring of complex engineering structures in service and prevent catastrophic fatigue and fracture in those solids." @default.
- W4313532072 created "2023-01-06" @default.
- W4313532072 creator A5018245976 @default.
- W4313532072 creator A5026677888 @default.
- W4313532072 creator A5028562219 @default.
- W4313532072 creator A5060000733 @default.
- W4313532072 creator A5069771802 @default.
- W4313532072 date "2022-12-26" @default.
- W4313532072 modified "2023-09-26" @default.
- W4313532072 title "A computational method for the load spectra of large-scale structures with a data-driven learning algorithm" @default.
- W4313532072 cites W1901616594 @default.
- W4313532072 cites W1970188203 @default.
- W4313532072 cites W1985716339 @default.
- W4313532072 cites W2018259456 @default.
- W4313532072 cites W2035529948 @default.
- W4313532072 cites W2042801611 @default.
- W4313532072 cites W2064675550 @default.
- W4313532072 cites W2113049767 @default.
- W4313532072 cites W2157331557 @default.
- W4313532072 cites W2347129741 @default.
- W4313532072 cites W2559394418 @default.
- W4313532072 cites W2584622573 @default.
- W4313532072 cites W2747592475 @default.
- W4313532072 cites W2789959669 @default.
- W4313532072 cites W2792385335 @default.
- W4313532072 cites W2804730645 @default.
- W4313532072 cites W2884430236 @default.
- W4313532072 cites W2910705748 @default.
- W4313532072 cites W2913323966 @default.
- W4313532072 cites W2913594191 @default.
- W4313532072 cites W2915160475 @default.
- W4313532072 cites W2921461015 @default.
- W4313532072 cites W2923222994 @default.
- W4313532072 cites W2946752227 @default.
- W4313532072 cites W2958704044 @default.
- W4313532072 cites W2963784808 @default.
- W4313532072 cites W2968923792 @default.
- W4313532072 cites W2976474645 @default.
- W4313532072 cites W2981342465 @default.
- W4313532072 cites W2982087033 @default.
- W4313532072 cites W2986518719 @default.
- W4313532072 cites W2988203096 @default.
- W4313532072 cites W2990015413 @default.
- W4313532072 cites W2996028791 @default.
- W4313532072 cites W2996132844 @default.
- W4313532072 cites W2998506103 @default.
- W4313532072 cites W2998886612 @default.
- W4313532072 cites W2999044305 @default.
- W4313532072 cites W3000740297 @default.
- W4313532072 cites W3003922491 @default.
- W4313532072 cites W3005188734 @default.
- W4313532072 cites W3006005697 @default.
- W4313532072 cites W3012417314 @default.
- W4313532072 cites W3027561281 @default.
- W4313532072 cites W3033546559 @default.
- W4313532072 cites W3041325230 @default.
- W4313532072 cites W3096526468 @default.
- W4313532072 cites W3098509317 @default.
- W4313532072 cites W3134820665 @default.
- W4313532072 cites W3134875744 @default.
- W4313532072 cites W3135277867 @default.
- W4313532072 cites W3138581309 @default.
- W4313532072 cites W3153000570 @default.
- W4313532072 cites W3158049979 @default.
- W4313532072 cites W3198589972 @default.
- W4313532072 cites W3202389660 @default.
- W4313532072 doi "https://doi.org/10.1007/s11431-021-2068-8" @default.
- W4313532072 hasPublicationYear "2022" @default.
- W4313532072 type Work @default.
- W4313532072 citedByCount "0" @default.
- W4313532072 crossrefType "journal-article" @default.
- W4313532072 hasAuthorship W4313532072A5018245976 @default.
- W4313532072 hasAuthorship W4313532072A5026677888 @default.
- W4313532072 hasAuthorship W4313532072A5028562219 @default.
- W4313532072 hasAuthorship W4313532072A5060000733 @default.
- W4313532072 hasAuthorship W4313532072A5069771802 @default.
- W4313532072 hasBestOaLocation W43135320722 @default.
- W4313532072 hasConcept C11413529 @default.
- W4313532072 hasConcept C119857082 @default.
- W4313532072 hasConcept C149635348 @default.
- W4313532072 hasConcept C154945302 @default.
- W4313532072 hasConcept C2780513914 @default.
- W4313532072 hasConcept C41008148 @default.
- W4313532072 hasConceptScore W4313532072C11413529 @default.
- W4313532072 hasConceptScore W4313532072C119857082 @default.
- W4313532072 hasConceptScore W4313532072C149635348 @default.
- W4313532072 hasConceptScore W4313532072C154945302 @default.
- W4313532072 hasConceptScore W4313532072C2780513914 @default.
- W4313532072 hasConceptScore W4313532072C41008148 @default.
- W4313532072 hasIssue "1" @default.
- W4313532072 hasLocation W43135320721 @default.
- W4313532072 hasLocation W43135320722 @default.
- W4313532072 hasOpenAccess W4313532072 @default.
- W4313532072 hasPrimaryLocation W43135320721 @default.
- W4313532072 hasRelatedWork W2092113852 @default.
- W4313532072 hasRelatedWork W2354251581 @default.
- W4313532072 hasRelatedWork W2357325779 @default.
- W4313532072 hasRelatedWork W2357461155 @default.