Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313532091> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313532091 endingPage "699" @default.
- W4313532091 startingPage "689" @default.
- W4313532091 abstract "Platforms for social networking such as Facebook and Twitter, as well as others, provide a great number of benefits, but they also come with a great number of drawbacks. Cyberbullying is one of the problems that may occur on these social sites. The effect that cyberbullying has on the lives of its victims is incalculable. It is quite subjective, and the approach that each individual would take to this differs greatly. For those who are bullied, the message may seem natural, but for others, it may be intimidating. The ambiguity that may be found in cyberbullying texts makes it very difficult to locate the bullying material. The use of textual postings has been the subject of a significant amount of study, which has been recorded. In this work Extreme Learning Machine (ELM) based cyberbullying detection is proposed. Convolutional Neural Network (CNN) is used to classify emoji posted in the tweets. The text, hashtag, emoji datasets are preprocessed, and features are extracted. ELM classifier is used to detect the cyberbullying. This work achieves accuracy of 99.41, precision of 92.76, recall of 90.17, and f1-score of 91.64." @default.
- W4313532091 created "2023-01-06" @default.
- W4313532091 creator A5064489639 @default.
- W4313532091 creator A5066031795 @default.
- W4313532091 creator A5079636020 @default.
- W4313532091 date "2023-01-01" @default.
- W4313532091 modified "2023-10-16" @default.
- W4313532091 title "A Novel Multimodal Hybrid Classifier Based Cyberbullying Detection for Social Media Platform" @default.
- W4313532091 cites W2769196221 @default.
- W4313532091 cites W2898373236 @default.
- W4313532091 cites W2998069555 @default.
- W4313532091 cites W3092739266 @default.
- W4313532091 cites W3094831718 @default.
- W4313532091 cites W3130041495 @default.
- W4313532091 cites W3146521653 @default.
- W4313532091 cites W3156978600 @default.
- W4313532091 cites W3158586872 @default.
- W4313532091 cites W3160969032 @default.
- W4313532091 cites W3175997347 @default.
- W4313532091 cites W3186804201 @default.
- W4313532091 cites W3208463727 @default.
- W4313532091 cites W3213226375 @default.
- W4313532091 cites W4213430631 @default.
- W4313532091 cites W4226429277 @default.
- W4313532091 cites W4281570478 @default.
- W4313532091 cites W4281870343 @default.
- W4313532091 doi "https://doi.org/10.1007/978-3-031-21438-7_57" @default.
- W4313532091 hasPublicationYear "2023" @default.
- W4313532091 type Work @default.
- W4313532091 citedByCount "1" @default.
- W4313532091 countsByYear W43135320912023 @default.
- W4313532091 crossrefType "book-chapter" @default.
- W4313532091 hasAuthorship W4313532091A5064489639 @default.
- W4313532091 hasAuthorship W4313532091A5066031795 @default.
- W4313532091 hasAuthorship W4313532091A5079636020 @default.
- W4313532091 hasConcept C100660578 @default.
- W4313532091 hasConcept C119857082 @default.
- W4313532091 hasConcept C136764020 @default.
- W4313532091 hasConcept C148524875 @default.
- W4313532091 hasConcept C154945302 @default.
- W4313532091 hasConcept C15744967 @default.
- W4313532091 hasConcept C180747234 @default.
- W4313532091 hasConcept C199360897 @default.
- W4313532091 hasConcept C2779247141 @default.
- W4313532091 hasConcept C2780522230 @default.
- W4313532091 hasConcept C41008148 @default.
- W4313532091 hasConcept C518677369 @default.
- W4313532091 hasConcept C81363708 @default.
- W4313532091 hasConcept C95623464 @default.
- W4313532091 hasConceptScore W4313532091C100660578 @default.
- W4313532091 hasConceptScore W4313532091C119857082 @default.
- W4313532091 hasConceptScore W4313532091C136764020 @default.
- W4313532091 hasConceptScore W4313532091C148524875 @default.
- W4313532091 hasConceptScore W4313532091C154945302 @default.
- W4313532091 hasConceptScore W4313532091C15744967 @default.
- W4313532091 hasConceptScore W4313532091C180747234 @default.
- W4313532091 hasConceptScore W4313532091C199360897 @default.
- W4313532091 hasConceptScore W4313532091C2779247141 @default.
- W4313532091 hasConceptScore W4313532091C2780522230 @default.
- W4313532091 hasConceptScore W4313532091C41008148 @default.
- W4313532091 hasConceptScore W4313532091C518677369 @default.
- W4313532091 hasConceptScore W4313532091C81363708 @default.
- W4313532091 hasConceptScore W4313532091C95623464 @default.
- W4313532091 hasLocation W43135320911 @default.
- W4313532091 hasOpenAccess W4313532091 @default.
- W4313532091 hasPrimaryLocation W43135320911 @default.
- W4313532091 hasRelatedWork W2337926734 @default.
- W4313532091 hasRelatedWork W2623427976 @default.
- W4313532091 hasRelatedWork W2961085424 @default.
- W4313532091 hasRelatedWork W2986507176 @default.
- W4313532091 hasRelatedWork W3027997911 @default.
- W4313532091 hasRelatedWork W4225852842 @default.
- W4313532091 hasRelatedWork W4287776258 @default.
- W4313532091 hasRelatedWork W4312501200 @default.
- W4313532091 hasRelatedWork W4320063605 @default.
- W4313532091 hasRelatedWork W4366224123 @default.
- W4313532091 isParatext "false" @default.
- W4313532091 isRetracted "false" @default.
- W4313532091 workType "book-chapter" @default.