Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313532377> ?p ?o ?g. }
- W4313532377 endingPage "654" @default.
- W4313532377 startingPage "626" @default.
- W4313532377 abstract "Abstract In the last decades, ego‐motion estimation or visual odometry (VO) has received a considerable amount of attention from the robotic research community, mainly due to its central importance in achieving robust localization and, as a consequence, autonomy. Different solutions have been explored, leading to a wide variety of approaches, mostly grounded on geometric methodologies and, more recently, on data‐driven paradigms. To guide researchers and practitioners in choosing the best VO method, different benchmark studies have been published. However, the majority of them compare only a small subset of the most popular approaches and, usually, on specific data sets or configurations. In contrast, in this work, we aim to provide a complete and thorough study of the most popular and best‐performing geometric and data‐driven solutions for VO. In our investigation, we considered several scenarios and environments, comparing the estimation accuracies and the role of the hyper‐parameters of the approaches selected, and analyzing the computational resources they require. Experiments and tests are performed on different data sets (both publicly available and self‐collected) and two different computational boards. The experimental results show pros and cons of the tested approaches under different perspectives. The geometric simultaneous localization and mapping methods are confirmed to be the best performing, while data‐driven approaches show robustness with respect to nonideal conditions present in more challenging scenarios." @default.
- W4313532377 created "2023-01-06" @default.
- W4313532377 creator A5016925926 @default.
- W4313532377 creator A5030674327 @default.
- W4313532377 creator A5037796058 @default.
- W4313532377 creator A5039816271 @default.
- W4313532377 creator A5042449805 @default.
- W4313532377 creator A5057766674 @default.
- W4313532377 creator A5059190034 @default.
- W4313532377 creator A5064978609 @default.
- W4313532377 creator A5076218432 @default.
- W4313532377 date "2023-01-03" @default.
- W4313532377 modified "2023-10-17" @default.
- W4313532377 title "A benchmark analysis of data‐driven and geometric approaches for robot ego‐motion estimation" @default.
- W4313532377 cites W1532362218 @default.
- W4313532377 cites W1656165940 @default.
- W4313532377 cites W1758624203 @default.
- W4313532377 cites W1970504153 @default.
- W4313532377 cites W1989484209 @default.
- W4313532377 cites W1992112935 @default.
- W4313532377 cites W2015996585 @default.
- W4313532377 cites W2058535340 @default.
- W4313532377 cites W2063599328 @default.
- W4313532377 cites W2079495150 @default.
- W4313532377 cites W2091790851 @default.
- W4313532377 cites W2115499947 @default.
- W4313532377 cites W2117228865 @default.
- W4313532377 cites W2150066425 @default.
- W4313532377 cites W2152671441 @default.
- W4313532377 cites W2168676389 @default.
- W4313532377 cites W2202897526 @default.
- W4313532377 cites W2218842719 @default.
- W4313532377 cites W2220063164 @default.
- W4313532377 cites W2396274919 @default.
- W4313532377 cites W2474281075 @default.
- W4313532377 cites W2538522345 @default.
- W4313532377 cites W2598706937 @default.
- W4313532377 cites W2609883120 @default.
- W4313532377 cites W2745859992 @default.
- W4313532377 cites W2750632489 @default.
- W4313532377 cites W2754177129 @default.
- W4313532377 cites W2789218862 @default.
- W4313532377 cites W2797395780 @default.
- W4313532377 cites W2883702102 @default.
- W4313532377 cites W2884962765 @default.
- W4313532377 cites W2935189788 @default.
- W4313532377 cites W2957927798 @default.
- W4313532377 cites W2968489055 @default.
- W4313532377 cites W2968673597 @default.
- W4313532377 cites W2979633827 @default.
- W4313532377 cites W2985775862 @default.
- W4313532377 cites W3034604951 @default.
- W4313532377 cites W3038041713 @default.
- W4313532377 cites W3043870192 @default.
- W4313532377 cites W3089705229 @default.
- W4313532377 cites W3091667825 @default.
- W4313532377 cites W3099698729 @default.
- W4313532377 cites W3102327032 @default.
- W4313532377 cites W3103648783 @default.
- W4313532377 cites W3106458387 @default.
- W4313532377 cites W3124420883 @default.
- W4313532377 cites W3159338852 @default.
- W4313532377 cites W3162561493 @default.
- W4313532377 cites W3165610079 @default.
- W4313532377 cites W3212360355 @default.
- W4313532377 cites W3214761471 @default.
- W4313532377 cites W4243425824 @default.
- W4313532377 cites W4246614213 @default.
- W4313532377 cites W612478963 @default.
- W4313532377 doi "https://doi.org/10.1002/rob.22151" @default.
- W4313532377 hasPublicationYear "2023" @default.
- W4313532377 type Work @default.
- W4313532377 citedByCount "1" @default.
- W4313532377 countsByYear W43135323772023 @default.
- W4313532377 crossrefType "journal-article" @default.
- W4313532377 hasAuthorship W4313532377A5016925926 @default.
- W4313532377 hasAuthorship W4313532377A5030674327 @default.
- W4313532377 hasAuthorship W4313532377A5037796058 @default.
- W4313532377 hasAuthorship W4313532377A5039816271 @default.
- W4313532377 hasAuthorship W4313532377A5042449805 @default.
- W4313532377 hasAuthorship W4313532377A5057766674 @default.
- W4313532377 hasAuthorship W4313532377A5059190034 @default.
- W4313532377 hasAuthorship W4313532377A5064978609 @default.
- W4313532377 hasAuthorship W4313532377A5076218432 @default.
- W4313532377 hasConcept C104317684 @default.
- W4313532377 hasConcept C119857082 @default.
- W4313532377 hasConcept C124101348 @default.
- W4313532377 hasConcept C13280743 @default.
- W4313532377 hasConcept C154945302 @default.
- W4313532377 hasConcept C185592680 @default.
- W4313532377 hasConcept C185798385 @default.
- W4313532377 hasConcept C205649164 @default.
- W4313532377 hasConcept C41008148 @default.
- W4313532377 hasConcept C55493867 @default.
- W4313532377 hasConcept C5799516 @default.
- W4313532377 hasConcept C63479239 @default.
- W4313532377 hasConcept C90509273 @default.
- W4313532377 hasConceptScore W4313532377C104317684 @default.