Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313532989> ?p ?o ?g. }
- W4313532989 endingPage "46" @default.
- W4313532989 startingPage "35" @default.
- W4313532989 abstract "Abstract. With increasing lake monitoring data, data-driven machine learning (ML) models might be able to capture the complex algal bloom dynamics that cannot be completely described in process-based (PB) models. We applied two ML models, the gradient boost regressor (GBR) and long short-term memory (LSTM) network, to predict algal blooms and seasonal changes in algal chlorophyll concentrations (Chl) in a mesotrophic lake. Three predictive workflows were tested, one based solely on available measurements and the others applying a two-step approach, first estimating lake nutrients that have limited observations and then predicting Chl using observed and pre-generated environmental factors. The third workflow was developed using hydrodynamic data derived from a PB model as additional training features in the two-step ML approach. The performance of the ML models was superior to a PB model in predicting nutrients and Chl. The hybrid model further improved the prediction of the timing and magnitude of algal blooms. A data sparsity test based on shuffling the order of training and testing years showed the accuracy of ML models decreased with increasing sample interval, and model performance varied with training–testing year combinations." @default.
- W4313532989 created "2023-01-06" @default.
- W4313532989 creator A5028376379 @default.
- W4313532989 creator A5065509420 @default.
- W4313532989 creator A5069396308 @default.
- W4313532989 date "2023-01-03" @default.
- W4313532989 modified "2023-10-06" @default.
- W4313532989 title "Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake" @default.
- W4313532989 cites W1576146757 @default.
- W4313532989 cites W1678356000 @default.
- W4313532989 cites W1974654287 @default.
- W4313532989 cites W1977168270 @default.
- W4313532989 cites W1996625435 @default.
- W4313532989 cites W1996640362 @default.
- W4313532989 cites W2017610058 @default.
- W4313532989 cites W2028023558 @default.
- W4313532989 cites W2033359788 @default.
- W4313532989 cites W2043491182 @default.
- W4313532989 cites W2064675550 @default.
- W4313532989 cites W2065734161 @default.
- W4313532989 cites W2071494775 @default.
- W4313532989 cites W2081335822 @default.
- W4313532989 cites W2086001701 @default.
- W4313532989 cites W2086145547 @default.
- W4313532989 cites W2092493622 @default.
- W4313532989 cites W2113162751 @default.
- W4313532989 cites W2113896637 @default.
- W4313532989 cites W2136729165 @default.
- W4313532989 cites W2137789246 @default.
- W4313532989 cites W2160033478 @default.
- W4313532989 cites W2171633038 @default.
- W4313532989 cites W2347104296 @default.
- W4313532989 cites W2402885289 @default.
- W4313532989 cites W2511595969 @default.
- W4313532989 cites W2548501426 @default.
- W4313532989 cites W2570626411 @default.
- W4313532989 cites W2793155954 @default.
- W4313532989 cites W2883227933 @default.
- W4313532989 cites W2936378099 @default.
- W4313532989 cites W2944037941 @default.
- W4313532989 cites W2982585804 @default.
- W4313532989 cites W2986457312 @default.
- W4313532989 cites W2993341338 @default.
- W4313532989 cites W3002136707 @default.
- W4313532989 cites W3005915581 @default.
- W4313532989 cites W3017791464 @default.
- W4313532989 cites W3027646416 @default.
- W4313532989 cites W3031175792 @default.
- W4313532989 cites W3113930266 @default.
- W4313532989 cites W4211010233 @default.
- W4313532989 cites W4211195291 @default.
- W4313532989 cites W4236966744 @default.
- W4313532989 cites W4294214983 @default.
- W4313532989 doi "https://doi.org/10.5194/gmd-16-35-2023" @default.
- W4313532989 hasPublicationYear "2023" @default.
- W4313532989 type Work @default.
- W4313532989 citedByCount "2" @default.
- W4313532989 countsByYear W43135329892023 @default.
- W4313532989 crossrefType "journal-article" @default.
- W4313532989 hasAuthorship W4313532989A5028376379 @default.
- W4313532989 hasAuthorship W4313532989A5065509420 @default.
- W4313532989 hasAuthorship W4313532989A5069396308 @default.
- W4313532989 hasBestOaLocation W43135329891 @default.
- W4313532989 hasConcept C111368507 @default.
- W4313532989 hasConcept C119857082 @default.
- W4313532989 hasConcept C120305227 @default.
- W4313532989 hasConcept C127313418 @default.
- W4313532989 hasConcept C142796444 @default.
- W4313532989 hasConcept C145453713 @default.
- W4313532989 hasConcept C155567681 @default.
- W4313532989 hasConcept C16910744 @default.
- W4313532989 hasConcept C185592680 @default.
- W4313532989 hasConcept C18903297 @default.
- W4313532989 hasConcept C199360897 @default.
- W4313532989 hasConcept C2778902199 @default.
- W4313532989 hasConcept C2780892065 @default.
- W4313532989 hasConcept C39432304 @default.
- W4313532989 hasConcept C41008148 @default.
- W4313532989 hasConcept C55493867 @default.
- W4313532989 hasConcept C86803240 @default.
- W4313532989 hasConceptScore W4313532989C111368507 @default.
- W4313532989 hasConceptScore W4313532989C119857082 @default.
- W4313532989 hasConceptScore W4313532989C120305227 @default.
- W4313532989 hasConceptScore W4313532989C127313418 @default.
- W4313532989 hasConceptScore W4313532989C142796444 @default.
- W4313532989 hasConceptScore W4313532989C145453713 @default.
- W4313532989 hasConceptScore W4313532989C155567681 @default.
- W4313532989 hasConceptScore W4313532989C16910744 @default.
- W4313532989 hasConceptScore W4313532989C185592680 @default.
- W4313532989 hasConceptScore W4313532989C18903297 @default.
- W4313532989 hasConceptScore W4313532989C199360897 @default.
- W4313532989 hasConceptScore W4313532989C2778902199 @default.
- W4313532989 hasConceptScore W4313532989C2780892065 @default.
- W4313532989 hasConceptScore W4313532989C39432304 @default.
- W4313532989 hasConceptScore W4313532989C41008148 @default.
- W4313532989 hasConceptScore W4313532989C55493867 @default.
- W4313532989 hasConceptScore W4313532989C86803240 @default.
- W4313532989 hasFunder F4320321033 @default.