Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313534857> ?p ?o ?g. }
- W4313534857 abstract "One of the challenges that reservoir engineers, drilling engineers, and geoscientists face in the oil and gas industry is determining the fracture density (FVDC) of reservoir rock. This critical parameter is valuable because its presence in oil and gas reservoirs boosts productivity and is pivotal for reservoir management, operation, and ultimately energy management. This valuable parameter is determined by some expensive operations such as FMI logs and core analysis techniques. As a result, this paper attempts to predict this important parameter using petrophysics logs routinely collected at oil and gas wells and by applying four robust computational algorithms and artificial intelligence hybrids. A total of 6067 data points were collected from three gas wells (#W1, #W2, and #W3) in one gas reservoir in Southwest Asia. Following feature selection, the input variables include spectral gamma ray (SGR); sonic porosity (PHIS); potassium (POTA); photoelectric absorption factor (PEF); neutron porosity (NPHI); sonic transition time (DT); bulk density (RHOB); and corrected gamma ray (CGR). In this study, four hybrids of two networks were used, including least squares support vector machine (LSSVM) and multi-layer perceptron (MLP) with two optimizers particle swarm optimizer (PSO) and genetic algorithm (GA). Four robust hybrid machine learning models were applied, and these are LSSVM-PSO/GA and MLP-PSO/GA, which had not previously used for prediction of FVDC. In addition, the k-fold cross validation method with k equal to 8 was used in this article. When the performance accuracy of the hybrid algorithms for the FVDC prediction is compared, the revealed result is LSSVM-PSO > LSSVM-GA > MLP-PSO > MLP-GA. The study revealed that the best algorithm for predicting FVDC among the four algorithms is LSSVM-PSO (for total dataset RMSE = 0.0463 1/m; R 2 = 0.9995). This algorithm has several advantages, including: 1) lower adjustment parameters, 2) high search efficiency, 3) fast convergence speed, 4) increased global search capability, and 5) preventing the local optimum from falling. When compared to other models, this model has the lowest error." @default.
- W4313534857 created "2023-01-06" @default.
- W4313534857 creator A5009599616 @default.
- W4313534857 creator A5012583826 @default.
- W4313534857 creator A5013180607 @default.
- W4313534857 creator A5028188439 @default.
- W4313534857 creator A5028618931 @default.
- W4313534857 creator A5039797710 @default.
- W4313534857 creator A5087483992 @default.
- W4313534857 creator A5088275450 @default.
- W4313534857 creator A5091783246 @default.
- W4313534857 date "2023-01-05" @default.
- W4313534857 modified "2023-09-27" @default.
- W4313534857 title "Prediction of fracture density in a gas reservoir using robust computational approaches" @default.
- W4313534857 cites W1496317909 @default.
- W4313534857 cites W1596717185 @default.
- W4313534857 cites W1826421496 @default.
- W4313534857 cites W1967910184 @default.
- W4313534857 cites W1983891313 @default.
- W4313534857 cites W2026014877 @default.
- W4313534857 cites W2028081771 @default.
- W4313534857 cites W2057331625 @default.
- W4313534857 cites W2093286138 @default.
- W4313534857 cites W2097571405 @default.
- W4313534857 cites W2109906847 @default.
- W4313534857 cites W2148633389 @default.
- W4313534857 cites W2152760402 @default.
- W4313534857 cites W2167101736 @default.
- W4313534857 cites W2612353157 @default.
- W4313534857 cites W2613406724 @default.
- W4313534857 cites W2736837310 @default.
- W4313534857 cites W2775380939 @default.
- W4313534857 cites W2810943906 @default.
- W4313534857 cites W2834213610 @default.
- W4313534857 cites W2884415819 @default.
- W4313534857 cites W2891234523 @default.
- W4313534857 cites W2893120105 @default.
- W4313534857 cites W2904760941 @default.
- W4313534857 cites W2923977719 @default.
- W4313534857 cites W2933013505 @default.
- W4313534857 cites W2967312813 @default.
- W4313534857 cites W2975084504 @default.
- W4313534857 cites W2993471286 @default.
- W4313534857 cites W2997981891 @default.
- W4313534857 cites W3000237447 @default.
- W4313534857 cites W3007134619 @default.
- W4313534857 cites W3008544338 @default.
- W4313534857 cites W3034712888 @default.
- W4313534857 cites W3035926446 @default.
- W4313534857 cites W3040758490 @default.
- W4313534857 cites W3048630347 @default.
- W4313534857 cites W3081494129 @default.
- W4313534857 cites W3089019288 @default.
- W4313534857 cites W3095590146 @default.
- W4313534857 cites W3096638284 @default.
- W4313534857 cites W3105829768 @default.
- W4313534857 cites W3107317270 @default.
- W4313534857 cites W3121071375 @default.
- W4313534857 cites W3121500821 @default.
- W4313534857 cites W3132954913 @default.
- W4313534857 cites W3135729391 @default.
- W4313534857 cites W3145503461 @default.
- W4313534857 cites W3160605717 @default.
- W4313534857 cites W3178837442 @default.
- W4313534857 cites W3183846709 @default.
- W4313534857 cites W3189318862 @default.
- W4313534857 cites W3195192906 @default.
- W4313534857 cites W3200106596 @default.
- W4313534857 cites W3201550277 @default.
- W4313534857 cites W3202687247 @default.
- W4313534857 cites W3205932868 @default.
- W4313534857 cites W3213196232 @default.
- W4313534857 cites W3216778633 @default.
- W4313534857 cites W3217532304 @default.
- W4313534857 cites W4200271206 @default.
- W4313534857 cites W4200358254 @default.
- W4313534857 cites W4205930639 @default.
- W4313534857 cites W4210392227 @default.
- W4313534857 cites W4212864484 @default.
- W4313534857 cites W4225480295 @default.
- W4313534857 cites W4237924588 @default.
- W4313534857 cites W4239510810 @default.
- W4313534857 cites W4240321558 @default.
- W4313534857 cites W4280528802 @default.
- W4313534857 cites W4281646739 @default.
- W4313534857 cites W4281905003 @default.
- W4313534857 cites W4282917880 @default.
- W4313534857 cites W4283721532 @default.
- W4313534857 cites W4283756923 @default.
- W4313534857 cites W4285042838 @default.
- W4313534857 cites W49513413 @default.
- W4313534857 doi "https://doi.org/10.3389/feart.2022.1023578" @default.
- W4313534857 hasPublicationYear "2023" @default.
- W4313534857 type Work @default.
- W4313534857 citedByCount "2" @default.
- W4313534857 countsByYear W43135348572022 @default.
- W4313534857 countsByYear W43135348572023 @default.
- W4313534857 crossrefType "journal-article" @default.
- W4313534857 hasAuthorship W4313534857A5009599616 @default.
- W4313534857 hasAuthorship W4313534857A5012583826 @default.