Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313546902> ?p ?o ?g. }
- W4313546902 endingPage "102916" @default.
- W4313546902 startingPage "102916" @default.
- W4313546902 abstract "Support Vector Machine (SVM) has been widely used to build software defect prediction models. Prior studies compared the accuracy of SVM to other machine learning algorithms but arrives at contradictory conclusions due to the use of different choices of kernel functions and metrics. Such a contradictory conclusion raises an important question about the performance of kernel functions, across different experimental conditions. To this end, the present study examines the impact and stability of four kernel functions with feature selection on the performance of SVM for software defect prediction. Strictly speaking, we examine the performance of nonlinear kernel functions against linear kernel function based on different experimental parameters such as data granularity, imbalance ratio of the dataset, and feature subsets. A large-scale study has been conducted using four kernel functions, ten feature subset selection thresholds based on the Information gain algorithm, 38 public datasets and one evaluation measure. This has resulted in 1520 experiments. The findings demonstrate that: 1) Not all nonlinear kernel functions significantly outperform linear, only RBF surpasses linear and other nonlinear kernel functions. 2) We don't have significant difference between kernel functions w.r.t. data granularity, we only found significant difference between RBF and other kernel function based on ‘function’ data granularity. 3) we also found that RBF can work significantly better than linear and other nonlinear function over datasets with very high and high imbalance ratios. 4) The performances of all kernel functions fluctuate over different feature subsets; However, using top 40% of the features would work best with all kernel functions. To conclude, we can recommend using SVM with RBF kernel for defects datasets because the performance of other kernel functions is limited." @default.
- W4313546902 created "2023-01-06" @default.
- W4313546902 creator A5002628427 @default.
- W4313546902 creator A5008070273 @default.
- W4313546902 creator A5015423824 @default.
- W4313546902 creator A5057439793 @default.
- W4313546902 date "2023-03-01" @default.
- W4313546902 modified "2023-09-25" @default.
- W4313546902 title "Examining the performance of kernel methods for software defect prediction based on support vector machine" @default.
- W4313546902 cites W1964062576 @default.
- W4313546902 cites W1989354793 @default.
- W4313546902 cites W1994719586 @default.
- W4313546902 cites W2017439596 @default.
- W4313546902 cites W2021688474 @default.
- W4313546902 cites W2047338137 @default.
- W4313546902 cites W2048456683 @default.
- W4313546902 cites W2065547122 @default.
- W4313546902 cites W2069569831 @default.
- W4313546902 cites W2086744115 @default.
- W4313546902 cites W2097883090 @default.
- W4313546902 cites W2101227285 @default.
- W4313546902 cites W2101728371 @default.
- W4313546902 cites W2105776892 @default.
- W4313546902 cites W2118283821 @default.
- W4313546902 cites W2120457925 @default.
- W4313546902 cites W2127623179 @default.
- W4313546902 cites W2137955320 @default.
- W4313546902 cites W2143637886 @default.
- W4313546902 cites W2146338950 @default.
- W4313546902 cites W2218021565 @default.
- W4313546902 cites W2304692780 @default.
- W4313546902 cites W2586292313 @default.
- W4313546902 cites W2606020393 @default.
- W4313546902 cites W2617227509 @default.
- W4313546902 cites W2744611928 @default.
- W4313546902 cites W2748169822 @default.
- W4313546902 cites W2765338669 @default.
- W4313546902 cites W2772617084 @default.
- W4313546902 cites W2783657687 @default.
- W4313546902 cites W2790397506 @default.
- W4313546902 cites W2790421420 @default.
- W4313546902 cites W2793681838 @default.
- W4313546902 cites W2795927334 @default.
- W4313546902 cites W2805001156 @default.
- W4313546902 cites W2808896747 @default.
- W4313546902 cites W2809761809 @default.
- W4313546902 cites W2895067255 @default.
- W4313546902 cites W2897049944 @default.
- W4313546902 cites W2898435572 @default.
- W4313546902 cites W2898762959 @default.
- W4313546902 cites W2909147635 @default.
- W4313546902 cites W2913405424 @default.
- W4313546902 cites W4250472656 @default.
- W4313546902 cites W600383368 @default.
- W4313546902 doi "https://doi.org/10.1016/j.scico.2022.102916" @default.
- W4313546902 hasPublicationYear "2023" @default.
- W4313546902 type Work @default.
- W4313546902 citedByCount "2" @default.
- W4313546902 countsByYear W43135469022023 @default.
- W4313546902 crossrefType "journal-article" @default.
- W4313546902 hasAuthorship W4313546902A5002628427 @default.
- W4313546902 hasAuthorship W4313546902A5008070273 @default.
- W4313546902 hasAuthorship W4313546902A5015423824 @default.
- W4313546902 hasAuthorship W4313546902A5057439793 @default.
- W4313546902 hasConcept C100595998 @default.
- W4313546902 hasConcept C111919701 @default.
- W4313546902 hasConcept C114614502 @default.
- W4313546902 hasConcept C119857082 @default.
- W4313546902 hasConcept C122280245 @default.
- W4313546902 hasConcept C12267149 @default.
- W4313546902 hasConcept C134517425 @default.
- W4313546902 hasConcept C140417398 @default.
- W4313546902 hasConcept C153180895 @default.
- W4313546902 hasConcept C154945302 @default.
- W4313546902 hasConcept C160446489 @default.
- W4313546902 hasConcept C177774035 @default.
- W4313546902 hasConcept C33923547 @default.
- W4313546902 hasConcept C41008148 @default.
- W4313546902 hasConcept C74193536 @default.
- W4313546902 hasConcept C75866337 @default.
- W4313546902 hasConceptScore W4313546902C100595998 @default.
- W4313546902 hasConceptScore W4313546902C111919701 @default.
- W4313546902 hasConceptScore W4313546902C114614502 @default.
- W4313546902 hasConceptScore W4313546902C119857082 @default.
- W4313546902 hasConceptScore W4313546902C122280245 @default.
- W4313546902 hasConceptScore W4313546902C12267149 @default.
- W4313546902 hasConceptScore W4313546902C134517425 @default.
- W4313546902 hasConceptScore W4313546902C140417398 @default.
- W4313546902 hasConceptScore W4313546902C153180895 @default.
- W4313546902 hasConceptScore W4313546902C154945302 @default.
- W4313546902 hasConceptScore W4313546902C160446489 @default.
- W4313546902 hasConceptScore W4313546902C177774035 @default.
- W4313546902 hasConceptScore W4313546902C33923547 @default.
- W4313546902 hasConceptScore W4313546902C41008148 @default.
- W4313546902 hasConceptScore W4313546902C74193536 @default.
- W4313546902 hasConceptScore W4313546902C75866337 @default.
- W4313546902 hasFunder F4320316734 @default.
- W4313546902 hasFunder F4320316805 @default.