Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313546951> ?p ?o ?g. }
- W4313546951 endingPage "3814" @default.
- W4313546951 startingPage "3801" @default.
- W4313546951 abstract "Low-complexity and privacy-respecting human sensing is a challenging task in smart environments as it requires the orchestration of multiple sensors, low-impact machine learning (ML) methods, and resource-constrained Internet of Things (IoT) devices. Client/server-based architectures are typically employed to support sensor fusion. However, these architectures need data to be moved to/from the cloud or data centers, which is contrary to the fundamental requirement of the IoT applications to limit costs, complexity, memory footprint, processing, and communication resources. In this article, we propose the design and implementation of an integrated edge device targeting human sensing for indoor smart spaces applications envisioned in Industry 5.0 applications. The proposed device implements the cumulative sum (CUSUM) method for data distillation from multiple sensors and adopts a low-complexity random forest algorithm (RFA) to sense and classify body movements: in particular, the device integrates both infrared (IR) and ultrasonic (US) sensors. This article discusses the benefits of the combined use of CUSUM and RFA methods against classical ML approaches in terms of accuracy, complexity, computing time, and storage. The proposed architecture and processing steps are validated experimentally by targeting the fall detection problem in a smart space environment. RFA reduces the complexity by at least three times compared to classical ML tools based on the analysis of space and time features (convolutional neural networks and long short-term memory): processing time is in the order of 0.1 s while accuracy is about 94%." @default.
- W4313546951 created "2023-01-06" @default.
- W4313546951 creator A5007923049 @default.
- W4313546951 creator A5012633927 @default.
- W4313546951 creator A5014872457 @default.
- W4313546951 creator A5020654621 @default.
- W4313546951 creator A5078370188 @default.
- W4313546951 date "2023-02-15" @default.
- W4313546951 modified "2023-09-25" @default.
- W4313546951 title "A Random Forest Approach to Body Motion Detection: Multisensory Fusion and Edge Processing" @default.
- W4313546951 cites W2119016061 @default.
- W4313546951 cites W2124216931 @default.
- W4313546951 cites W2132424470 @default.
- W4313546951 cites W2155632266 @default.
- W4313546951 cites W2399947624 @default.
- W4313546951 cites W2548559732 @default.
- W4313546951 cites W2743764621 @default.
- W4313546951 cites W2765198464 @default.
- W4313546951 cites W2789381138 @default.
- W4313546951 cites W2798563674 @default.
- W4313546951 cites W2798929318 @default.
- W4313546951 cites W2890459775 @default.
- W4313546951 cites W2893813411 @default.
- W4313546951 cites W2894306208 @default.
- W4313546951 cites W2905207581 @default.
- W4313546951 cites W2909545524 @default.
- W4313546951 cites W2911964244 @default.
- W4313546951 cites W2914447147 @default.
- W4313546951 cites W2950865323 @default.
- W4313546951 cites W2962814013 @default.
- W4313546951 cites W2964029185 @default.
- W4313546951 cites W2964297133 @default.
- W4313546951 cites W2974369860 @default.
- W4313546951 cites W3000533668 @default.
- W4313546951 cites W3012086766 @default.
- W4313546951 cites W3015636663 @default.
- W4313546951 cites W3019056961 @default.
- W4313546951 cites W3044853528 @default.
- W4313546951 cites W3095373330 @default.
- W4313546951 cites W3112102251 @default.
- W4313546951 cites W3112105942 @default.
- W4313546951 cites W3114558802 @default.
- W4313546951 cites W3115821830 @default.
- W4313546951 cites W3126635901 @default.
- W4313546951 cites W3151281508 @default.
- W4313546951 cites W3170113470 @default.
- W4313546951 cites W3177085432 @default.
- W4313546951 cites W3207468962 @default.
- W4313546951 cites W3210833372 @default.
- W4313546951 cites W3214078758 @default.
- W4313546951 cites W3214861658 @default.
- W4313546951 cites W4200625142 @default.
- W4313546951 cites W4206134544 @default.
- W4313546951 cites W4210844773 @default.
- W4313546951 cites W4220927582 @default.
- W4313546951 cites W4312284955 @default.
- W4313546951 doi "https://doi.org/10.1109/jsen.2022.3232085" @default.
- W4313546951 hasPublicationYear "2023" @default.
- W4313546951 type Work @default.
- W4313546951 citedByCount "3" @default.
- W4313546951 countsByYear W43135469512023 @default.
- W4313546951 crossrefType "journal-article" @default.
- W4313546951 hasAuthorship W4313546951A5007923049 @default.
- W4313546951 hasAuthorship W4313546951A5012633927 @default.
- W4313546951 hasAuthorship W4313546951A5014872457 @default.
- W4313546951 hasAuthorship W4313546951A5020654621 @default.
- W4313546951 hasAuthorship W4313546951A5078370188 @default.
- W4313546951 hasBestOaLocation W43135469511 @default.
- W4313546951 hasConcept C111919701 @default.
- W4313546951 hasConcept C11413529 @default.
- W4313546951 hasConcept C119857082 @default.
- W4313546951 hasConcept C120314980 @default.
- W4313546951 hasConcept C124101348 @default.
- W4313546951 hasConcept C149635348 @default.
- W4313546951 hasConcept C154945302 @default.
- W4313546951 hasConcept C162307627 @default.
- W4313546951 hasConcept C179799912 @default.
- W4313546951 hasConcept C2778456923 @default.
- W4313546951 hasConcept C33954974 @default.
- W4313546951 hasConcept C41008148 @default.
- W4313546951 hasConcept C75684735 @default.
- W4313546951 hasConcept C79403827 @default.
- W4313546951 hasConcept C79974875 @default.
- W4313546951 hasConcept C81363708 @default.
- W4313546951 hasConceptScore W4313546951C111919701 @default.
- W4313546951 hasConceptScore W4313546951C11413529 @default.
- W4313546951 hasConceptScore W4313546951C119857082 @default.
- W4313546951 hasConceptScore W4313546951C120314980 @default.
- W4313546951 hasConceptScore W4313546951C124101348 @default.
- W4313546951 hasConceptScore W4313546951C149635348 @default.
- W4313546951 hasConceptScore W4313546951C154945302 @default.
- W4313546951 hasConceptScore W4313546951C162307627 @default.
- W4313546951 hasConceptScore W4313546951C179799912 @default.
- W4313546951 hasConceptScore W4313546951C2778456923 @default.
- W4313546951 hasConceptScore W4313546951C33954974 @default.
- W4313546951 hasConceptScore W4313546951C41008148 @default.
- W4313546951 hasConceptScore W4313546951C75684735 @default.
- W4313546951 hasConceptScore W4313546951C79403827 @default.