Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313547191> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4313547191 endingPage "109303" @default.
- W4313547191 startingPage "109303" @default.
- W4313547191 abstract "Ordinal classification of imbalanced data is a challenging problem that appears in many real world applications. The challenge is to simultaneously consider the order of the classes and the class imbalance, which can notably improve the performance metrics. The Bayesian formulation allows to deal with these two characteristics jointly: It takes into account the prior probability of each class and the decision costs, which can be used to include the imbalance and the ordinal information, respectively. We propose to use the Bayesian formulation to train neural networks, which have shown excellent results in many classification tasks. A loss function is proposed to train networks with a single neuron in the output layer and a threshold based decision rule. The loss is an estimate of the Bayesian classification cost, based on the Parzen windows estimator, which is fitted for a thresholded decision. Experiments with several real datasets show that the proposed method provides competitive results in different scenarios, due to its high flexibility to specify the relative importance of the errors in the classification of patterns of different classes, considering the order and independently of the probability of each class." @default.
- W4313547191 created "2023-01-06" @default.
- W4313547191 creator A5057560298 @default.
- W4313547191 creator A5064315752 @default.
- W4313547191 date "2023-05-01" @default.
- W4313547191 modified "2023-10-09" @default.
- W4313547191 title "Neural network for ordinal classification of imbalanced data by minimizing a Bayesian cost" @default.
- W4313547191 cites W1580948147 @default.
- W4313547191 cites W1964168965 @default.
- W4313547191 cites W1994445591 @default.
- W4313547191 cites W2053519393 @default.
- W4313547191 cites W2067001387 @default.
- W4313547191 cites W2099454382 @default.
- W4313547191 cites W2118020555 @default.
- W4313547191 cites W2124648328 @default.
- W4313547191 cites W2127570188 @default.
- W4313547191 cites W2141966633 @default.
- W4313547191 cites W2148143831 @default.
- W4313547191 cites W2164341120 @default.
- W4313547191 cites W2190044943 @default.
- W4313547191 cites W2562319768 @default.
- W4313547191 cites W2612220790 @default.
- W4313547191 cites W2612395532 @default.
- W4313547191 cites W2616031720 @default.
- W4313547191 cites W2775915431 @default.
- W4313547191 cites W2900085600 @default.
- W4313547191 cites W2945008420 @default.
- W4313547191 cites W3012560784 @default.
- W4313547191 cites W3097760447 @default.
- W4313547191 cites W3194878797 @default.
- W4313547191 cites W4220659900 @default.
- W4313547191 doi "https://doi.org/10.1016/j.patcog.2023.109303" @default.
- W4313547191 hasPublicationYear "2023" @default.
- W4313547191 type Work @default.
- W4313547191 citedByCount "3" @default.
- W4313547191 countsByYear W43135471912023 @default.
- W4313547191 crossrefType "journal-article" @default.
- W4313547191 hasAuthorship W4313547191A5057560298 @default.
- W4313547191 hasAuthorship W4313547191A5064315752 @default.
- W4313547191 hasBestOaLocation W43135471911 @default.
- W4313547191 hasConcept C105795698 @default.
- W4313547191 hasConcept C107673813 @default.
- W4313547191 hasConcept C119857082 @default.
- W4313547191 hasConcept C124101348 @default.
- W4313547191 hasConcept C153180895 @default.
- W4313547191 hasConcept C154945302 @default.
- W4313547191 hasConcept C185429906 @default.
- W4313547191 hasConcept C2777212361 @default.
- W4313547191 hasConcept C2780598303 @default.
- W4313547191 hasConcept C33923547 @default.
- W4313547191 hasConcept C41008148 @default.
- W4313547191 hasConcept C50644808 @default.
- W4313547191 hasConceptScore W4313547191C105795698 @default.
- W4313547191 hasConceptScore W4313547191C107673813 @default.
- W4313547191 hasConceptScore W4313547191C119857082 @default.
- W4313547191 hasConceptScore W4313547191C124101348 @default.
- W4313547191 hasConceptScore W4313547191C153180895 @default.
- W4313547191 hasConceptScore W4313547191C154945302 @default.
- W4313547191 hasConceptScore W4313547191C185429906 @default.
- W4313547191 hasConceptScore W4313547191C2777212361 @default.
- W4313547191 hasConceptScore W4313547191C2780598303 @default.
- W4313547191 hasConceptScore W4313547191C33923547 @default.
- W4313547191 hasConceptScore W4313547191C41008148 @default.
- W4313547191 hasConceptScore W4313547191C50644808 @default.
- W4313547191 hasFunder F4320309764 @default.
- W4313547191 hasFunder F4320315062 @default.
- W4313547191 hasFunder F4320322930 @default.
- W4313547191 hasLocation W43135471911 @default.
- W4313547191 hasLocation W43135471912 @default.
- W4313547191 hasOpenAccess W4313547191 @default.
- W4313547191 hasPrimaryLocation W43135471911 @default.
- W4313547191 hasRelatedWork W2015759683 @default.
- W4313547191 hasRelatedWork W2371687270 @default.
- W4313547191 hasRelatedWork W3175363083 @default.
- W4313547191 hasRelatedWork W4281634296 @default.
- W4313547191 hasRelatedWork W4285230481 @default.
- W4313547191 hasRelatedWork W4287880334 @default.
- W4313547191 hasRelatedWork W4311888330 @default.
- W4313547191 hasRelatedWork W4319161863 @default.
- W4313547191 hasRelatedWork W4366700029 @default.
- W4313547191 hasRelatedWork W4385769873 @default.
- W4313547191 hasVolume "137" @default.
- W4313547191 isParatext "false" @default.
- W4313547191 isRetracted "false" @default.
- W4313547191 workType "article" @default.