Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313551014> ?p ?o ?g. }
- W4313551014 abstract "Shape sensing is an emerging technique for the reconstruction of deformed shapes using data from a discrete network of strain sensors. The prominence is due to its suitability in promising applications such as structural health monitoring in multiple engineering fields and shape capturing in the medical field. In this work, a physics-informed deep learning model, named SenseNet, was developed for shape sensing applications. Unlike existing neural network approaches for shape sensing, SenseNet incorporates the knowledge of the physics of the problem, so its performance does not rely on the choices of the training data. Compared with numerical physics-based approaches, SenseNet is a mesh-free method, and therefore it offers convenience to problems with complex geometries. SenseNet is composed of two parts: a neural network to predict displacements at the given input coordinates, and a physics part to compute the loss using a function incorporated with physics information. The prior knowledge considered in the loss function includes the boundary conditions and physics relations such as the strain–displacement relation, material constitutive equation, and the governing equation obtained from the law of balance of linear momentum. SenseNet was validated with finite-element solutions for cases with nonlinear displacement fields and stress fields using bending and fixed tension tests, respectively, in both two and three dimensions. A study of the sensor density effects illustrated the fact that the accuracy of the model can be improved using a larger amount of strain data. Because general three dimensional governing equations are incorporated in the model, it was found that SenseNet is capable of reconstructing deformations in volumes with reasonable accuracy using just the surface strain data. Hence, unlike most existing models, SenseNet is not specialized for certain types of elements, and can be extended universally for even thick-body applications." @default.
- W4313551014 created "2023-01-06" @default.
- W4313551014 creator A5026264820 @default.
- W4313551014 creator A5026582600 @default.
- W4313551014 creator A5039446428 @default.
- W4313551014 date "2023-03-01" @default.
- W4313551014 modified "2023-09-29" @default.
- W4313551014 title "SenseNet: A Physics-Informed Deep Learning Model for Shape Sensing" @default.
- W4313551014 cites W1964272755 @default.
- W4313551014 cites W1973829237 @default.
- W4313551014 cites W1987568439 @default.
- W4313551014 cites W1993762225 @default.
- W4313551014 cites W1993903737 @default.
- W4313551014 cites W2001117140 @default.
- W4313551014 cites W2026356153 @default.
- W4313551014 cites W2041543445 @default.
- W4313551014 cites W2048462089 @default.
- W4313551014 cites W2050805778 @default.
- W4313551014 cites W2061015086 @default.
- W4313551014 cites W2068501694 @default.
- W4313551014 cites W2081403666 @default.
- W4313551014 cites W2120356561 @default.
- W4313551014 cites W2131425706 @default.
- W4313551014 cites W2163863955 @default.
- W4313551014 cites W2209468148 @default.
- W4313551014 cites W2333805689 @default.
- W4313551014 cites W2337855747 @default.
- W4313551014 cites W2343110664 @default.
- W4313551014 cites W2587696068 @default.
- W4313551014 cites W2736924693 @default.
- W4313551014 cites W2771721184 @default.
- W4313551014 cites W2779497038 @default.
- W4313551014 cites W2802234692 @default.
- W4313551014 cites W2892818787 @default.
- W4313551014 cites W2899283552 @default.
- W4313551014 cites W2902699959 @default.
- W4313551014 cites W2928692963 @default.
- W4313551014 cites W2965009213 @default.
- W4313551014 cites W3006683960 @default.
- W4313551014 cites W3008118574 @default.
- W4313551014 cites W3092231855 @default.
- W4313551014 cites W3092743582 @default.
- W4313551014 cites W3094228034 @default.
- W4313551014 cites W3111875869 @default.
- W4313551014 cites W3117059627 @default.
- W4313551014 cites W3126940265 @default.
- W4313551014 cites W3153200540 @default.
- W4313551014 cites W3191891057 @default.
- W4313551014 cites W3197694049 @default.
- W4313551014 cites W3214040539 @default.
- W4313551014 cites W4213436545 @default.
- W4313551014 cites W4220717841 @default.
- W4313551014 cites W4285604295 @default.
- W4313551014 doi "https://doi.org/10.1061/jenmdt.emeng-6901" @default.
- W4313551014 hasPublicationYear "2023" @default.
- W4313551014 type Work @default.
- W4313551014 citedByCount "0" @default.
- W4313551014 crossrefType "journal-article" @default.
- W4313551014 hasAuthorship W4313551014A5026264820 @default.
- W4313551014 hasAuthorship W4313551014A5026582600 @default.
- W4313551014 hasAuthorship W4313551014A5039446428 @default.
- W4313551014 hasConcept C10138342 @default.
- W4313551014 hasConcept C107551265 @default.
- W4313551014 hasConcept C121332964 @default.
- W4313551014 hasConcept C135628077 @default.
- W4313551014 hasConcept C14036430 @default.
- W4313551014 hasConcept C154945302 @default.
- W4313551014 hasConcept C15744967 @default.
- W4313551014 hasConcept C158622935 @default.
- W4313551014 hasConcept C162324750 @default.
- W4313551014 hasConcept C202444582 @default.
- W4313551014 hasConcept C202973686 @default.
- W4313551014 hasConcept C28826006 @default.
- W4313551014 hasConcept C33923547 @default.
- W4313551014 hasConcept C41008148 @default.
- W4313551014 hasConcept C50644808 @default.
- W4313551014 hasConcept C542102704 @default.
- W4313551014 hasConcept C60718061 @default.
- W4313551014 hasConcept C62520636 @default.
- W4313551014 hasConcept C78458016 @default.
- W4313551014 hasConcept C86803240 @default.
- W4313551014 hasConcept C9652623 @default.
- W4313551014 hasConcept C97355855 @default.
- W4313551014 hasConceptScore W4313551014C10138342 @default.
- W4313551014 hasConceptScore W4313551014C107551265 @default.
- W4313551014 hasConceptScore W4313551014C121332964 @default.
- W4313551014 hasConceptScore W4313551014C135628077 @default.
- W4313551014 hasConceptScore W4313551014C14036430 @default.
- W4313551014 hasConceptScore W4313551014C154945302 @default.
- W4313551014 hasConceptScore W4313551014C15744967 @default.
- W4313551014 hasConceptScore W4313551014C158622935 @default.
- W4313551014 hasConceptScore W4313551014C162324750 @default.
- W4313551014 hasConceptScore W4313551014C202444582 @default.
- W4313551014 hasConceptScore W4313551014C202973686 @default.
- W4313551014 hasConceptScore W4313551014C28826006 @default.
- W4313551014 hasConceptScore W4313551014C33923547 @default.
- W4313551014 hasConceptScore W4313551014C41008148 @default.
- W4313551014 hasConceptScore W4313551014C50644808 @default.
- W4313551014 hasConceptScore W4313551014C542102704 @default.
- W4313551014 hasConceptScore W4313551014C60718061 @default.