Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313551195> ?p ?o ?g. }
- W4313551195 endingPage "104508" @default.
- W4313551195 startingPage "104508" @default.
- W4313551195 abstract "One of the key problems in lower limb-based human–computer interaction (HCI) technology is to use wearable devices to recognize the wearer's lower limb motions. The information commonly used to discriminate human motion mainly includes biological and kinematic signals. Considering that unimodal signals do not provide enough information to recognize lower limb movements, in this paper, we proposed a Vision Transformer (ViT)-based architecture for lower limb motion recognition from multichannel Mechanomyography (MMG) signals and kinematic data. Firstly, we applied the self-attention mechanism to enhance each input channel signal. Then the data was fed into ViT model. Vision Transformer-based Lower Limb Motion Recognition (ViT - LLMR) architecture proposed in this paper can avoid the model training problems such as autonomous feature extraction and feature selection for machine learning, and the model can recognize eight lower limb motions containing six subjects with an accuracy of 94.62%. In addition, we analyzed the generalization ability of the model when undersampling and only collecting fragment signals. In conclusion, the proposed ViT - LLMR architecture could provide a basis for practical applications in different HCI fields." @default.
- W4313551195 created "2023-01-06" @default.
- W4313551195 creator A5000435339 @default.
- W4313551195 creator A5000649219 @default.
- W4313551195 creator A5030904811 @default.
- W4313551195 creator A5089792666 @default.
- W4313551195 date "2023-04-01" @default.
- W4313551195 modified "2023-10-14" @default.
- W4313551195 title "ViT-LLMR: Vision Transformer-based lower limb motion recognition from fusion signals of MMG and IMU" @default.
- W4313551195 cites W1904891549 @default.
- W4313551195 cites W1975098739 @default.
- W4313551195 cites W2016227850 @default.
- W4313551195 cites W2032896546 @default.
- W4313551195 cites W2055253444 @default.
- W4313551195 cites W2086187855 @default.
- W4313551195 cites W2096569144 @default.
- W4313551195 cites W2134120396 @default.
- W4313551195 cites W2342619534 @default.
- W4313551195 cites W2480520452 @default.
- W4313551195 cites W2517950334 @default.
- W4313551195 cites W2574374599 @default.
- W4313551195 cites W2577952604 @default.
- W4313551195 cites W2593440111 @default.
- W4313551195 cites W2734549526 @default.
- W4313551195 cites W2735021484 @default.
- W4313551195 cites W2742425536 @default.
- W4313551195 cites W2793988802 @default.
- W4313551195 cites W2802823749 @default.
- W4313551195 cites W2883233325 @default.
- W4313551195 cites W2889505988 @default.
- W4313551195 cites W2889849019 @default.
- W4313551195 cites W2892009249 @default.
- W4313551195 cites W2898716605 @default.
- W4313551195 cites W2913167765 @default.
- W4313551195 cites W2916609993 @default.
- W4313551195 cites W2944662892 @default.
- W4313551195 cites W2965087489 @default.
- W4313551195 cites W2966907001 @default.
- W4313551195 cites W2980682776 @default.
- W4313551195 cites W2984329907 @default.
- W4313551195 cites W2996945945 @default.
- W4313551195 cites W2999880746 @default.
- W4313551195 cites W3003221865 @default.
- W4313551195 cites W3011211609 @default.
- W4313551195 cites W3022911583 @default.
- W4313551195 cites W3044651858 @default.
- W4313551195 cites W3045212151 @default.
- W4313551195 cites W3087020486 @default.
- W4313551195 cites W3112725583 @default.
- W4313551195 cites W3126426351 @default.
- W4313551195 cites W3131638281 @default.
- W4313551195 cites W3157280810 @default.
- W4313551195 cites W4200099808 @default.
- W4313551195 cites W4377202790 @default.
- W4313551195 doi "https://doi.org/10.1016/j.bspc.2022.104508" @default.
- W4313551195 hasPublicationYear "2023" @default.
- W4313551195 type Work @default.
- W4313551195 citedByCount "3" @default.
- W4313551195 countsByYear W43135511952023 @default.
- W4313551195 crossrefType "journal-article" @default.
- W4313551195 hasAuthorship W4313551195A5000435339 @default.
- W4313551195 hasAuthorship W4313551195A5000649219 @default.
- W4313551195 hasAuthorship W4313551195A5030904811 @default.
- W4313551195 hasAuthorship W4313551195A5089792666 @default.
- W4313551195 hasConcept C121332964 @default.
- W4313551195 hasConcept C149635348 @default.
- W4313551195 hasConcept C150594956 @default.
- W4313551195 hasConcept C153180895 @default.
- W4313551195 hasConcept C154945302 @default.
- W4313551195 hasConcept C31972630 @default.
- W4313551195 hasConcept C39920418 @default.
- W4313551195 hasConcept C41008148 @default.
- W4313551195 hasConcept C52622490 @default.
- W4313551195 hasConcept C74650414 @default.
- W4313551195 hasConceptScore W4313551195C121332964 @default.
- W4313551195 hasConceptScore W4313551195C149635348 @default.
- W4313551195 hasConceptScore W4313551195C150594956 @default.
- W4313551195 hasConceptScore W4313551195C153180895 @default.
- W4313551195 hasConceptScore W4313551195C154945302 @default.
- W4313551195 hasConceptScore W4313551195C31972630 @default.
- W4313551195 hasConceptScore W4313551195C39920418 @default.
- W4313551195 hasConceptScore W4313551195C41008148 @default.
- W4313551195 hasConceptScore W4313551195C52622490 @default.
- W4313551195 hasConceptScore W4313551195C74650414 @default.
- W4313551195 hasLocation W43135511951 @default.
- W4313551195 hasOpenAccess W4313551195 @default.
- W4313551195 hasPrimaryLocation W43135511951 @default.
- W4313551195 hasRelatedWork W1964120219 @default.
- W4313551195 hasRelatedWork W2000165426 @default.
- W4313551195 hasRelatedWork W2114557664 @default.
- W4313551195 hasRelatedWork W2144059113 @default.
- W4313551195 hasRelatedWork W2146076056 @default.
- W4313551195 hasRelatedWork W2385132419 @default.
- W4313551195 hasRelatedWork W2772780115 @default.
- W4313551195 hasRelatedWork W2811390910 @default.
- W4313551195 hasRelatedWork W3003836766 @default.
- W4313551195 hasRelatedWork W4377236355 @default.
- W4313551195 hasVolume "82" @default.