Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313554573> ?p ?o ?g. }
- W4313554573 abstract "An intelligent and efficient methodology is needed owning to the continuous increase of global municipal solid waste (MSW). This is because the common methods of manual and semi-mechanical screenings not only consume large amount of manpower and material resources but also accelerate virus community transmission. As the categories of MSW are diverse considering their compositions, chemical reactions, and processing procedures, etc., resulting in low efficiencies in MSW sorting using the traditional methods. Deep machine learning can help MSW sorting becoming into a smarter and more efficient mode. This study for the first time applied MSWNet in MSW sorting, a ResNet-50 with transfer learning. The method of cyclical learning rate was taken to avoid blind finding, and tests were repeated until accidentally encountering a good value. Measures of visualization were also considered to make the MSWNet model more transparent and accountable. Results showed transfer learning enhanced the efficiency of training time (from 741 s to 598.5 s), and improved the accuracy of recognition performance (from 88.50% to 93.50%); MSWNet showed a better performance in MSW classsification in terms of sensitivity (93.50%), precision (93.40%), F1-score (93.40%), accuracy (93.50%) and AUC (92.00%). The findings of this study can be taken as a reference for building the model MSW classification by deep learning, quantifying a suitable learning rate, and changing the data from high dimensions to two dimensions.Supplementary material is available in the online version of this article at 10.1007/s11783-023-1677-1 and is accessible for authorized users." @default.
- W4313554573 created "2023-01-06" @default.
- W4313554573 creator A5041593240 @default.
- W4313554573 creator A5042947574 @default.
- W4313554573 creator A5044158612 @default.
- W4313554573 creator A5059039982 @default.
- W4313554573 creator A5061028143 @default.
- W4313554573 creator A5079721092 @default.
- W4313554573 date "2023-01-01" @default.
- W4313554573 modified "2023-10-12" @default.
- W4313554573 title "MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal solid waste sorting" @default.
- W4313554573 cites W1965495959 @default.
- W4313554573 cites W2032937972 @default.
- W4313554573 cites W2064723114 @default.
- W4313554573 cites W2253429366 @default.
- W4313554573 cites W2522127752 @default.
- W4313554573 cites W2607336283 @default.
- W4313554573 cites W2887075398 @default.
- W4313554573 cites W2890522215 @default.
- W4313554573 cites W2969443669 @default.
- W4313554573 cites W3085186921 @default.
- W4313554573 cites W3128659999 @default.
- W4313554573 cites W3134104632 @default.
- W4313554573 cites W3161134130 @default.
- W4313554573 cites W3167032456 @default.
- W4313554573 cites W3168997536 @default.
- W4313554573 cites W3179017304 @default.
- W4313554573 cites W3183728074 @default.
- W4313554573 cites W3188553920 @default.
- W4313554573 cites W3191212483 @default.
- W4313554573 cites W3194081221 @default.
- W4313554573 cites W3194141600 @default.
- W4313554573 cites W3198542749 @default.
- W4313554573 cites W3199249067 @default.
- W4313554573 cites W3201994460 @default.
- W4313554573 cites W4207063227 @default.
- W4313554573 cites W4214717310 @default.
- W4313554573 cites W4220749590 @default.
- W4313554573 cites W4225729377 @default.
- W4313554573 cites W4228998404 @default.
- W4313554573 cites W4285039129 @default.
- W4313554573 cites W4286338722 @default.
- W4313554573 cites W4288085024 @default.
- W4313554573 cites W4293242441 @default.
- W4313554573 doi "https://doi.org/10.1007/s11783-023-1677-1" @default.
- W4313554573 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36628171" @default.
- W4313554573 hasPublicationYear "2023" @default.
- W4313554573 type Work @default.
- W4313554573 citedByCount "2" @default.
- W4313554573 countsByYear W43135545732023 @default.
- W4313554573 crossrefType "journal-article" @default.
- W4313554573 hasAuthorship W4313554573A5041593240 @default.
- W4313554573 hasAuthorship W4313554573A5042947574 @default.
- W4313554573 hasAuthorship W4313554573A5044158612 @default.
- W4313554573 hasAuthorship W4313554573A5059039982 @default.
- W4313554573 hasAuthorship W4313554573A5061028143 @default.
- W4313554573 hasAuthorship W4313554573A5079721092 @default.
- W4313554573 hasBestOaLocation W43135545731 @default.
- W4313554573 hasConcept C108583219 @default.
- W4313554573 hasConcept C111696304 @default.
- W4313554573 hasConcept C119857082 @default.
- W4313554573 hasConcept C127413603 @default.
- W4313554573 hasConcept C150899416 @default.
- W4313554573 hasConcept C153180895 @default.
- W4313554573 hasConcept C154945302 @default.
- W4313554573 hasConcept C199360897 @default.
- W4313554573 hasConcept C36464697 @default.
- W4313554573 hasConcept C41008148 @default.
- W4313554573 hasConcept C44154836 @default.
- W4313554573 hasConcept C548081761 @default.
- W4313554573 hasConcept C75779659 @default.
- W4313554573 hasConceptScore W4313554573C108583219 @default.
- W4313554573 hasConceptScore W4313554573C111696304 @default.
- W4313554573 hasConceptScore W4313554573C119857082 @default.
- W4313554573 hasConceptScore W4313554573C127413603 @default.
- W4313554573 hasConceptScore W4313554573C150899416 @default.
- W4313554573 hasConceptScore W4313554573C153180895 @default.
- W4313554573 hasConceptScore W4313554573C154945302 @default.
- W4313554573 hasConceptScore W4313554573C199360897 @default.
- W4313554573 hasConceptScore W4313554573C36464697 @default.
- W4313554573 hasConceptScore W4313554573C41008148 @default.
- W4313554573 hasConceptScore W4313554573C44154836 @default.
- W4313554573 hasConceptScore W4313554573C548081761 @default.
- W4313554573 hasConceptScore W4313554573C75779659 @default.
- W4313554573 hasIssue "6" @default.
- W4313554573 hasLocation W43135545731 @default.
- W4313554573 hasLocation W43135545732 @default.
- W4313554573 hasLocation W43135545733 @default.
- W4313554573 hasOpenAccess W4313554573 @default.
- W4313554573 hasPrimaryLocation W43135545731 @default.
- W4313554573 hasRelatedWork W2889705046 @default.
- W4313554573 hasRelatedWork W2946016983 @default.
- W4313554573 hasRelatedWork W2960456850 @default.
- W4313554573 hasRelatedWork W3043944665 @default.
- W4313554573 hasRelatedWork W3192840557 @default.
- W4313554573 hasRelatedWork W4223943233 @default.
- W4313554573 hasRelatedWork W4312200629 @default.
- W4313554573 hasRelatedWork W4317565044 @default.
- W4313554573 hasRelatedWork W4380075502 @default.
- W4313554573 hasRelatedWork W4382286161 @default.