Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313555704> ?p ?o ?g. }
- W4313555704 abstract "Antenatal hydronephrosis (ANH) is one of the most common anomalies identified on prenatal ultrasound, found in up to 4.5% of all pregnancies. Children with ANH are surveilled with repeated renal ultrasound and when there is high suspicion for a ureteropelvic junction obstruction on renal ultrasound, a mercaptuacetyltriglycerine (MAG3) Lasix renal scan is performed to evaluate for obstruction. However, the challenging interpretation of MAG3 renal scans places patients at risk of misdiagnosis.Our objective was to analyze MAG3 renal scans using machine learning to predict renal complications. We hypothesized that our deep learning model would extract features from MAG3 renal scans that can predict renal complications in children with ANH.We performed a case-control study of MAG3 studies drawn from a population of children with ANH concerning for ureteropelvic junction obstruction evaluated at our institution from January 2009 until June of 2021. The outcome was renal complications that occur ≥6 months after an equivocal MAG-3 renal scan. We created two machine learning models: a deep learning model using the radiotracer concentration versus time data from the kidney of interest and a random forest model created using clinical data. The performance of the models was assessed using measures of diagnostic accuracy.We identified 152 eligible patients with available images of which 62 were cases and 90 were controls. The deep learning model predicted future renal complications with an overall accuracy of 73% (95% confidence inteveral [CI] 68-76%) and an AUC of 0.78 (95% CI 0.7, 0.84). The random forest model had an accuracy of 62% (95% CI 60-66%) and an AUC of 0.67 (95% CI. 0 64, 0.72) DISCUSSION: Our deep learning model predicted patients at high risk of developing renal complications following an equivocal renal scan and discriminate those at low risk with moderately high accuracy (73%). The deep learning model outperformed the clinical model built from clinical features classically used by urologists for surgical decision making.Our models have the potential to influence clinical decision making by providing supplemental analytical data from MAG3 scans that would not otherwise be available to urologists. Future multi-institutional retrospective and prospective trials are needed to validate our model." @default.
- W4313555704 created "2023-01-06" @default.
- W4313555704 creator A5006812054 @default.
- W4313555704 creator A5009795814 @default.
- W4313555704 creator A5025431226 @default.
- W4313555704 creator A5047045868 @default.
- W4313555704 creator A5049788204 @default.
- W4313555704 creator A5050547905 @default.
- W4313555704 creator A5051368982 @default.
- W4313555704 creator A5054165798 @default.
- W4313555704 creator A5054570375 @default.
- W4313555704 creator A5058391954 @default.
- W4313555704 creator A5064189749 @default.
- W4313555704 creator A5073639781 @default.
- W4313555704 creator A5080603573 @default.
- W4313555704 creator A5085458264 @default.
- W4313555704 creator A5086467821 @default.
- W4313555704 creator A5088461426 @default.
- W4313555704 creator A5091131381 @default.
- W4313555704 date "2023-01-01" @default.
- W4313555704 modified "2023-10-03" @default.
- W4313555704 title "Deep learning of renal scans in children with antenatal hydronephrosis" @default.
- W4313555704 cites W1628009063 @default.
- W4313555704 cites W1963586707 @default.
- W4313555704 cites W1969002142 @default.
- W4313555704 cites W1989722312 @default.
- W4313555704 cites W1992663017 @default.
- W4313555704 cites W2000406968 @default.
- W4313555704 cites W2018610313 @default.
- W4313555704 cites W2030168298 @default.
- W4313555704 cites W2084555956 @default.
- W4313555704 cites W2089980205 @default.
- W4313555704 cites W2091996318 @default.
- W4313555704 cites W2154834356 @default.
- W4313555704 cites W2155419864 @default.
- W4313555704 cites W2162940462 @default.
- W4313555704 cites W2340622744 @default.
- W4313555704 cites W2341106171 @default.
- W4313555704 cites W2401520370 @default.
- W4313555704 cites W2530279937 @default.
- W4313555704 cites W2557738935 @default.
- W4313555704 cites W2581082771 @default.
- W4313555704 cites W2754545665 @default.
- W4313555704 cites W2928981760 @default.
- W4313555704 cites W2948184739 @default.
- W4313555704 cites W3166036287 @default.
- W4313555704 cites W3172777055 @default.
- W4313555704 cites W4229762182 @default.
- W4313555704 cites W4246773916 @default.
- W4313555704 doi "https://doi.org/10.1016/j.jpurol.2022.12.017" @default.
- W4313555704 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36775719" @default.
- W4313555704 hasPublicationYear "2023" @default.
- W4313555704 type Work @default.
- W4313555704 citedByCount "1" @default.
- W4313555704 countsByYear W43135557042023 @default.
- W4313555704 crossrefType "journal-article" @default.
- W4313555704 hasAuthorship W4313555704A5006812054 @default.
- W4313555704 hasAuthorship W4313555704A5009795814 @default.
- W4313555704 hasAuthorship W4313555704A5025431226 @default.
- W4313555704 hasAuthorship W4313555704A5047045868 @default.
- W4313555704 hasAuthorship W4313555704A5049788204 @default.
- W4313555704 hasAuthorship W4313555704A5050547905 @default.
- W4313555704 hasAuthorship W4313555704A5051368982 @default.
- W4313555704 hasAuthorship W4313555704A5054165798 @default.
- W4313555704 hasAuthorship W4313555704A5054570375 @default.
- W4313555704 hasAuthorship W4313555704A5058391954 @default.
- W4313555704 hasAuthorship W4313555704A5064189749 @default.
- W4313555704 hasAuthorship W4313555704A5073639781 @default.
- W4313555704 hasAuthorship W4313555704A5080603573 @default.
- W4313555704 hasAuthorship W4313555704A5085458264 @default.
- W4313555704 hasAuthorship W4313555704A5086467821 @default.
- W4313555704 hasAuthorship W4313555704A5088461426 @default.
- W4313555704 hasAuthorship W4313555704A5091131381 @default.
- W4313555704 hasConcept C126322002 @default.
- W4313555704 hasConcept C126838900 @default.
- W4313555704 hasConcept C133397671 @default.
- W4313555704 hasConcept C143753070 @default.
- W4313555704 hasConcept C2779863012 @default.
- W4313555704 hasConcept C2780091579 @default.
- W4313555704 hasConcept C2781040948 @default.
- W4313555704 hasConcept C2908647359 @default.
- W4313555704 hasConcept C71924100 @default.
- W4313555704 hasConcept C77411442 @default.
- W4313555704 hasConcept C99454951 @default.
- W4313555704 hasConceptScore W4313555704C126322002 @default.
- W4313555704 hasConceptScore W4313555704C126838900 @default.
- W4313555704 hasConceptScore W4313555704C133397671 @default.
- W4313555704 hasConceptScore W4313555704C143753070 @default.
- W4313555704 hasConceptScore W4313555704C2779863012 @default.
- W4313555704 hasConceptScore W4313555704C2780091579 @default.
- W4313555704 hasConceptScore W4313555704C2781040948 @default.
- W4313555704 hasConceptScore W4313555704C2908647359 @default.
- W4313555704 hasConceptScore W4313555704C71924100 @default.
- W4313555704 hasConceptScore W4313555704C77411442 @default.
- W4313555704 hasConceptScore W4313555704C99454951 @default.
- W4313555704 hasLocation W43135557041 @default.
- W4313555704 hasLocation W43135557042 @default.
- W4313555704 hasOpenAccess W4313555704 @default.
- W4313555704 hasPrimaryLocation W43135557041 @default.
- W4313555704 hasRelatedWork W2032500447 @default.