Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313555725> ?p ?o ?g. }
- W4313555725 endingPage "917" @default.
- W4313555725 startingPage "902" @default.
- W4313555725 abstract "Efferent modulation of vestibular afferent excitability is linked to muscarinic signaling cascades that close low-voltage-gated potassium channels (i.e., KCNQ). Here, we show that muscarinic signaling cascades also depolarize the activation range of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We compared the voltage activation range and kinetics of HCN channels and induced firing patterns before and after administering the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine-M (Oxo-M) in dissociated vestibular ganglion neurons (VGNs) from rats of either sex using perforated whole-cell patch-clamp methods. Oxo-M depolarized HCN channels' half-activation voltage (V1/2) and sped up the rate of activation near resting potential twofold. HCN channels in large-diameter and/or transient firing VGN (putative cell bodies of irregular firing neuron from central epithelial zones) had relatively depolarized V1/2 in control solution and were less sensitive to mAChR activation than those found in small-diameter VGN with sustained firing patterns (putatively belonging to regular firing afferents). The impact of mAChR on HCN channels is not a direct consequence of closing KCNQ channels since pretreating the cells with Linopirdine, a KCNQ channel blocker, did not prevent HCN channel depolarization by Oxo-M. Efferent signaling promoted ion channel configurations that were favorable to highly regular spiking in some VGN, but not others. This is consistent with previous observations that low-voltage gated potassium currents in VGN are conducted by mAChR agonist-sensitive and -insensitive channels. Connecting efferent signaling to HCN channels is significant because of the channel's impact on spike-timing regularity and nonchemical transmission between Type I hair cells and vestibular afferents.SIGNIFICANCE STATEMENT Vestibular afferents express a diverse complement of ion channels. In vitro studies identified low-voltage activated potassium channels and hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as crucial for shaping the timing and sensitivity of afferent responses. Moreover, a network of acetylcholine-releasing efferent neurons controls afferent excitability by closing a subgroup of low-voltage activated potassium channels on the afferent neuron. This work shows that these efferent signaling cascades also enhance the activation of HCN channels by depolarizing their voltage activation range. The size of this effect varies depending on the endogenous properties of the HCN channel and on cell type (as determined by discharge patterns and cell size). Simultaneously controlling two ion-channel groups gives the vestibular efferent system exquisite control over afferent neuron activity." @default.
- W4313555725 created "2023-01-06" @default.
- W4313555725 creator A5010262055 @default.
- W4313555725 creator A5025458954 @default.
- W4313555725 date "2023-01-05" @default.
- W4313555725 modified "2023-10-17" @default.
- W4313555725 title "Muscarinic Acetylcholine Receptors Modulate HCN Channel Properties in Vestibular Ganglion Neurons" @default.
- W4313555725 cites W1801833463 @default.
- W4313555725 cites W1965663770 @default.
- W4313555725 cites W1966921666 @default.
- W4313555725 cites W1973596427 @default.
- W4313555725 cites W1976584289 @default.
- W4313555725 cites W1977893112 @default.
- W4313555725 cites W1978182640 @default.
- W4313555725 cites W1984242546 @default.
- W4313555725 cites W1994962594 @default.
- W4313555725 cites W1996759313 @default.
- W4313555725 cites W1997836778 @default.
- W4313555725 cites W2001852849 @default.
- W4313555725 cites W2005146186 @default.
- W4313555725 cites W2008579029 @default.
- W4313555725 cites W2009950336 @default.
- W4313555725 cites W2015585869 @default.
- W4313555725 cites W2020173449 @default.
- W4313555725 cites W2022417895 @default.
- W4313555725 cites W2025444835 @default.
- W4313555725 cites W2032206244 @default.
- W4313555725 cites W2036181804 @default.
- W4313555725 cites W2048869654 @default.
- W4313555725 cites W2049520776 @default.
- W4313555725 cites W2070847243 @default.
- W4313555725 cites W2074298121 @default.
- W4313555725 cites W2080688001 @default.
- W4313555725 cites W2086831790 @default.
- W4313555725 cites W2089838797 @default.
- W4313555725 cites W2089973072 @default.
- W4313555725 cites W2092617713 @default.
- W4313555725 cites W2093140465 @default.
- W4313555725 cites W2096283467 @default.
- W4313555725 cites W2098315381 @default.
- W4313555725 cites W2100014574 @default.
- W4313555725 cites W2103465492 @default.
- W4313555725 cites W2103687341 @default.
- W4313555725 cites W2127425504 @default.
- W4313555725 cites W2145106458 @default.
- W4313555725 cites W2149167311 @default.
- W4313555725 cites W2161201932 @default.
- W4313555725 cites W2169999882 @default.
- W4313555725 cites W2171502806 @default.
- W4313555725 cites W2171553829 @default.
- W4313555725 cites W2173794755 @default.
- W4313555725 cites W2182052513 @default.
- W4313555725 cites W2197398699 @default.
- W4313555725 cites W2343617684 @default.
- W4313555725 cites W2578241464 @default.
- W4313555725 cites W2769904229 @default.
- W4313555725 cites W2911599811 @default.
- W4313555725 cites W2956984253 @default.
- W4313555725 cites W2981283786 @default.
- W4313555725 cites W3120276766 @default.
- W4313555725 cites W31385694 @default.
- W4313555725 cites W4313528432 @default.
- W4313555725 doi "https://doi.org/10.1523/jneurosci.2552-21.2022" @default.
- W4313555725 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36604171" @default.
- W4313555725 hasPublicationYear "2023" @default.
- W4313555725 type Work @default.
- W4313555725 citedByCount "1" @default.
- W4313555725 countsByYear W43135557252023 @default.
- W4313555725 crossrefType "journal-article" @default.
- W4313555725 hasAuthorship W4313555725A5010262055 @default.
- W4313555725 hasAuthorship W4313555725A5025458954 @default.
- W4313555725 hasBestOaLocation W43135557252 @default.
- W4313555725 hasConcept C12554922 @default.
- W4313555725 hasConcept C134018914 @default.
- W4313555725 hasConcept C169760540 @default.
- W4313555725 hasConcept C170493617 @default.
- W4313555725 hasConcept C181911157 @default.
- W4313555725 hasConcept C185592680 @default.
- W4313555725 hasConcept C2775910092 @default.
- W4313555725 hasConcept C2776512019 @default.
- W4313555725 hasConcept C2778824757 @default.
- W4313555725 hasConcept C2778938600 @default.
- W4313555725 hasConcept C2779263132 @default.
- W4313555725 hasConcept C2779600325 @default.
- W4313555725 hasConcept C2780965148 @default.
- W4313555725 hasConcept C33789571 @default.
- W4313555725 hasConcept C4141045 @default.
- W4313555725 hasConcept C50254741 @default.
- W4313555725 hasConcept C55493867 @default.
- W4313555725 hasConcept C83743174 @default.
- W4313555725 hasConcept C86803240 @default.
- W4313555725 hasConceptScore W4313555725C12554922 @default.
- W4313555725 hasConceptScore W4313555725C134018914 @default.
- W4313555725 hasConceptScore W4313555725C169760540 @default.
- W4313555725 hasConceptScore W4313555725C170493617 @default.
- W4313555725 hasConceptScore W4313555725C181911157 @default.
- W4313555725 hasConceptScore W4313555725C185592680 @default.
- W4313555725 hasConceptScore W4313555725C2775910092 @default.