Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313555762> ?p ?o ?g. }
- W4313555762 endingPage "12" @default.
- W4313555762 startingPage "1" @default.
- W4313555762 abstract "Multiview stereo (MVS) aerial image depth estimation is a research frontier in the remote sensing field. Recent deep learning-based advances in close-range object reconstruction have suggested the great potential of this approach. Meanwhile, the deformation problem and the scale variation issue are also worthy of attention. These characteristics of aerial images limit the applicability of the current methods for aerial image depth estimation. Moreover, there are few available benchmark datasets for aerial image depth estimation. In this regard, this article describes a new benchmark dataset called the LuoJia-MVS dataset ( <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://irsip.whu.edu.cn/resources/resources_en_v2.php</uri> ), as well as a new deep neural network known as the hierarchical deformable cascade MVS network (HDC-MVSNet). The LuoJia-MVS dataset contains 7972 five-view images with a spatial resolution of 10 cm, pixel-wise depths, and precise camera parameters, and was generated from an accurate digital surface model (DSM) built from thousands of stereo aerial images. In the HDC-MVSNet network, a new full-scale feature pyramid extraction module, a hierarchical set of 3-D convolutional blocks, and “true 3-D” deformable 3-D convolutional layers are specifically designed by considering the aforementioned characteristics of aerial images. Overall and ablation experiments on the WHU and LuoJia-MVS datasets validated the superiority of HDC-MVSNet over the current state-of-the-art MVS depth estimation methods and confirmed that the newly built dataset can provide an effective benchmark." @default.
- W4313555762 created "2023-01-06" @default.
- W4313555762 creator A5024511509 @default.
- W4313555762 creator A5025341885 @default.
- W4313555762 creator A5031729932 @default.
- W4313555762 creator A5035663528 @default.
- W4313555762 creator A5070404755 @default.
- W4313555762 creator A5080209274 @default.
- W4313555762 date "2023-01-01" @default.
- W4313555762 modified "2023-10-16" @default.
- W4313555762 title "A Hierarchical Deformable Deep Neural Network and an Aerial Image Benchmark Dataset for Surface Multiview Stereo Reconstruction" @default.
- W4313555762 cites W1964057156 @default.
- W4313555762 cites W1993120651 @default.
- W4313555762 cites W2085905957 @default.
- W4313555762 cites W2117248802 @default.
- W4313555762 cites W2128052895 @default.
- W4313555762 cites W2138821028 @default.
- W4313555762 cites W2460551350 @default.
- W4313555762 cites W2565639579 @default.
- W4313555762 cites W2601564443 @default.
- W4313555762 cites W2610884537 @default.
- W4313555762 cites W2738551266 @default.
- W4313555762 cites W2741885505 @default.
- W4313555762 cites W2884436604 @default.
- W4313555762 cites W2888945633 @default.
- W4313555762 cites W2910122275 @default.
- W4313555762 cites W2916798096 @default.
- W4313555762 cites W2926429807 @default.
- W4313555762 cites W2943781490 @default.
- W4313555762 cites W2966926453 @default.
- W4313555762 cites W2982169158 @default.
- W4313555762 cites W2992718396 @default.
- W4313555762 cites W3014447010 @default.
- W4313555762 cites W3015788359 @default.
- W4313555762 cites W3033193681 @default.
- W4313555762 cites W3034524082 @default.
- W4313555762 cites W3034530552 @default.
- W4313555762 cites W3034600477 @default.
- W4313555762 cites W3035257660 @default.
- W4313555762 cites W3035483468 @default.
- W4313555762 cites W3094340127 @default.
- W4313555762 cites W3097305369 @default.
- W4313555762 cites W3102132650 @default.
- W4313555762 cites W3107030229 @default.
- W4313555762 cites W3107379492 @default.
- W4313555762 cites W3120248555 @default.
- W4313555762 cites W3170262190 @default.
- W4313555762 cites W4281790783 @default.
- W4313555762 cites W4312722796 @default.
- W4313555762 cites W63091017 @default.
- W4313555762 doi "https://doi.org/10.1109/tgrs.2023.3234694" @default.
- W4313555762 hasPublicationYear "2023" @default.
- W4313555762 type Work @default.
- W4313555762 citedByCount "0" @default.
- W4313555762 crossrefType "journal-article" @default.
- W4313555762 hasAuthorship W4313555762A5024511509 @default.
- W4313555762 hasAuthorship W4313555762A5025341885 @default.
- W4313555762 hasAuthorship W4313555762A5031729932 @default.
- W4313555762 hasAuthorship W4313555762A5035663528 @default.
- W4313555762 hasAuthorship W4313555762A5070404755 @default.
- W4313555762 hasAuthorship W4313555762A5080209274 @default.
- W4313555762 hasConcept C108583219 @default.
- W4313555762 hasConcept C115961682 @default.
- W4313555762 hasConcept C127313418 @default.
- W4313555762 hasConcept C138885662 @default.
- W4313555762 hasConcept C142575187 @default.
- W4313555762 hasConcept C153180895 @default.
- W4313555762 hasConcept C154945302 @default.
- W4313555762 hasConcept C160633673 @default.
- W4313555762 hasConcept C185798385 @default.
- W4313555762 hasConcept C205649164 @default.
- W4313555762 hasConcept C2524010 @default.
- W4313555762 hasConcept C2776401178 @default.
- W4313555762 hasConcept C2776429412 @default.
- W4313555762 hasConcept C2778755073 @default.
- W4313555762 hasConcept C31972630 @default.
- W4313555762 hasConcept C33923547 @default.
- W4313555762 hasConcept C41008148 @default.
- W4313555762 hasConcept C41895202 @default.
- W4313555762 hasConcept C52622490 @default.
- W4313555762 hasConcept C58640448 @default.
- W4313555762 hasConcept C62649853 @default.
- W4313555762 hasConcept C81363708 @default.
- W4313555762 hasConceptScore W4313555762C108583219 @default.
- W4313555762 hasConceptScore W4313555762C115961682 @default.
- W4313555762 hasConceptScore W4313555762C127313418 @default.
- W4313555762 hasConceptScore W4313555762C138885662 @default.
- W4313555762 hasConceptScore W4313555762C142575187 @default.
- W4313555762 hasConceptScore W4313555762C153180895 @default.
- W4313555762 hasConceptScore W4313555762C154945302 @default.
- W4313555762 hasConceptScore W4313555762C160633673 @default.
- W4313555762 hasConceptScore W4313555762C185798385 @default.
- W4313555762 hasConceptScore W4313555762C205649164 @default.
- W4313555762 hasConceptScore W4313555762C2524010 @default.
- W4313555762 hasConceptScore W4313555762C2776401178 @default.
- W4313555762 hasConceptScore W4313555762C2776429412 @default.
- W4313555762 hasConceptScore W4313555762C2778755073 @default.
- W4313555762 hasConceptScore W4313555762C31972630 @default.