Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313558118> ?p ?o ?g. }
- W4313558118 abstract "Recommender systems play a significant role in information filtering and have been utilized in different scenarios, such as e-commerce and social media. With the prosperity of deep learning, deep recommender systems show superior performance by capturing non-linear information and item-user relationships. However, the design of deep recommender systems heavily relies on human experiences and expert knowledge. To tackle this problem, Automated Machine Learning (AutoML) is introduced to automatically search for the proper candidates for different parts of deep recommender systems. This survey performs a comprehensive review of the literature in this field. Firstly, we propose an abstract concept for AutoML for deep recommender systems (AutoRecSys) that describes its building blocks and distinguishes it from conventional AutoML techniques and recommender systems. Secondly, we present a taxonomy as a classification framework containing feature selection search, embedding dimension search, feature interaction search, model architecture search, and other components search. Furthermore, we put a particular emphasis on the search space and search strategy, as they are the common thread to connect all methods within each category and enable practitioners to analyze and compare various approaches. Finally, we propose four future promising research directions that will lead this line of research." @default.
- W4313558118 created "2023-01-06" @default.
- W4313558118 creator A5000919145 @default.
- W4313558118 creator A5054070359 @default.
- W4313558118 creator A5059105298 @default.
- W4313558118 creator A5062357883 @default.
- W4313558118 creator A5088492734 @default.
- W4313558118 date "2023-01-05" @default.
- W4313558118 modified "2023-09-27" @default.
- W4313558118 title "AutoML for Deep Recommender Systems: A Survey" @default.
- W4313558118 cites W1720514416 @default.
- W4313558118 cites W1939338799 @default.
- W4313558118 cites W1999974018 @default.
- W4313558118 cites W2023954349 @default.
- W4313558118 cites W2042281163 @default.
- W4313558118 cites W2054141820 @default.
- W4313558118 cites W2072291513 @default.
- W4313558118 cites W2076618162 @default.
- W4313558118 cites W2090411045 @default.
- W4313558118 cites W2124659975 @default.
- W4313558118 cites W2135046866 @default.
- W4313558118 cites W2155912844 @default.
- W4313558118 cites W2157881433 @default.
- W4313558118 cites W2172249709 @default.
- W4313558118 cites W228037265 @default.
- W4313558118 cites W2282821441 @default.
- W4313558118 cites W2475334473 @default.
- W4313558118 cites W2509235963 @default.
- W4313558118 cites W2512971201 @default.
- W4313558118 cites W2548570154 @default.
- W4313558118 cites W2605350416 @default.
- W4313558118 cites W2742272831 @default.
- W4313558118 cites W2743159750 @default.
- W4313558118 cites W2773706593 @default.
- W4313558118 cites W2783944588 @default.
- W4313558118 cites W2791983374 @default.
- W4313558118 cites W2793768763 @default.
- W4313558118 cites W2892821876 @default.
- W4313558118 cites W2954698196 @default.
- W4313558118 cites W2962745591 @default.
- W4313558118 cites W2963832024 @default.
- W4313558118 cites W2964052347 @default.
- W4313558118 cites W2964182926 @default.
- W4313558118 cites W2972269283 @default.
- W4313558118 cites W2997261254 @default.
- W4313558118 cites W3012731857 @default.
- W4313558118 cites W3012782947 @default.
- W4313558118 cites W3034552531 @default.
- W4313558118 cites W3045200674 @default.
- W4313558118 cites W3081190557 @default.
- W4313558118 cites W3081362488 @default.
- W4313558118 cites W3093965394 @default.
- W4313558118 cites W3101704389 @default.
- W4313558118 cites W3101707147 @default.
- W4313558118 cites W3104506006 @default.
- W4313558118 cites W3104789011 @default.
- W4313558118 cites W3117684406 @default.
- W4313558118 cites W3154430477 @default.
- W4313558118 cites W3155496675 @default.
- W4313558118 cites W3155651553 @default.
- W4313558118 cites W3156351347 @default.
- W4313558118 cites W3166439894 @default.
- W4313558118 cites W3172054950 @default.
- W4313558118 cites W3187174779 @default.
- W4313558118 cites W3208543775 @default.
- W4313558118 cites W3209828932 @default.
- W4313558118 cites W4224227049 @default.
- W4313558118 cites W4224320476 @default.
- W4313558118 cites W4224926669 @default.
- W4313558118 cites W4306317000 @default.
- W4313558118 doi "https://doi.org/10.1145/3579355" @default.
- W4313558118 hasPublicationYear "2023" @default.
- W4313558118 type Work @default.
- W4313558118 citedByCount "2" @default.
- W4313558118 countsByYear W43135581182023 @default.
- W4313558118 crossrefType "journal-article" @default.
- W4313558118 hasAuthorship W4313558118A5000919145 @default.
- W4313558118 hasAuthorship W4313558118A5054070359 @default.
- W4313558118 hasAuthorship W4313558118A5059105298 @default.
- W4313558118 hasAuthorship W4313558118A5062357883 @default.
- W4313558118 hasAuthorship W4313558118A5088492734 @default.
- W4313558118 hasBestOaLocation W43135581181 @default.
- W4313558118 hasConcept C108583219 @default.
- W4313558118 hasConcept C119857082 @default.
- W4313558118 hasConcept C154945302 @default.
- W4313558118 hasConcept C202444582 @default.
- W4313558118 hasConcept C23123220 @default.
- W4313558118 hasConcept C33923547 @default.
- W4313558118 hasConcept C41008148 @default.
- W4313558118 hasConcept C557471498 @default.
- W4313558118 hasConcept C9652623 @default.
- W4313558118 hasConceptScore W4313558118C108583219 @default.
- W4313558118 hasConceptScore W4313558118C119857082 @default.
- W4313558118 hasConceptScore W4313558118C154945302 @default.
- W4313558118 hasConceptScore W4313558118C202444582 @default.
- W4313558118 hasConceptScore W4313558118C23123220 @default.
- W4313558118 hasConceptScore W4313558118C33923547 @default.
- W4313558118 hasConceptScore W4313558118C41008148 @default.
- W4313558118 hasConceptScore W4313558118C557471498 @default.
- W4313558118 hasConceptScore W4313558118C9652623 @default.