Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313559015> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4313559015 abstract "Understanding and predicting the properties of polymers is vital to developing tailored polymer molecules for desired applications. Classical force fields may fail to capture key properties, for example, the transport properties of certain polymer systems such as polyethylene glycol. As a solution, we present an alternative potential energy surface, a charge recursive neural network (QRNN) model trained on DFT calculations made on smaller atomic clusters that generalizes well to oligomers comprising larger atomic clusters or longer chains. We demonstrate the validity of the polymer QRNN workflow by modeling the oligomers of ethylene glycol. We apply two rounds of active learning (addition of new training clusters based on current model performance) and implement a novel model training approach that uses partial charges from a semi-empirical method. Our developed QRNN model for polymers produces stable molecular dynamics (MD) simulation trajectory and captures the dynamics of polymer chains as indicated by the striking agreement with experimental values. Our model allows working on much larger systems than allowed by DFT simulations, at the same time providing a more accurate force field than classical force fields which provides a promising avenue for large-scale molecular simulations of polymeric systems." @default.
- W4313559015 created "2023-01-06" @default.
- W4313559015 creator A5000577448 @default.
- W4313559015 creator A5004322104 @default.
- W4313559015 creator A5009063775 @default.
- W4313559015 creator A5041434247 @default.
- W4313559015 creator A5041826406 @default.
- W4313559015 creator A5078984238 @default.
- W4313559015 creator A5081959751 @default.
- W4313559015 date "2023-01-05" @default.
- W4313559015 modified "2023-10-17" @default.
- W4313559015 title "Development of Scalable and Generalizable Machine Learned Force Field for Polymers" @default.
- W4313559015 doi "https://doi.org/10.26434/chemrxiv-2023-4z2bw" @default.
- W4313559015 hasPublicationYear "2023" @default.
- W4313559015 type Work @default.
- W4313559015 citedByCount "0" @default.
- W4313559015 crossrefType "posted-content" @default.
- W4313559015 hasAuthorship W4313559015A5000577448 @default.
- W4313559015 hasAuthorship W4313559015A5004322104 @default.
- W4313559015 hasAuthorship W4313559015A5009063775 @default.
- W4313559015 hasAuthorship W4313559015A5041434247 @default.
- W4313559015 hasAuthorship W4313559015A5041826406 @default.
- W4313559015 hasAuthorship W4313559015A5078984238 @default.
- W4313559015 hasAuthorship W4313559015A5081959751 @default.
- W4313559015 hasBestOaLocation W43135590151 @default.
- W4313559015 hasConcept C10803110 @default.
- W4313559015 hasConcept C121332964 @default.
- W4313559015 hasConcept C121864883 @default.
- W4313559015 hasConcept C13662910 @default.
- W4313559015 hasConcept C147597530 @default.
- W4313559015 hasConcept C154945302 @default.
- W4313559015 hasConcept C159467904 @default.
- W4313559015 hasConcept C159985019 @default.
- W4313559015 hasConcept C171250308 @default.
- W4313559015 hasConcept C185592680 @default.
- W4313559015 hasConcept C192562407 @default.
- W4313559015 hasConcept C202444582 @default.
- W4313559015 hasConcept C2524010 @default.
- W4313559015 hasConcept C33923547 @default.
- W4313559015 hasConcept C41008148 @default.
- W4313559015 hasConcept C48044578 @default.
- W4313559015 hasConcept C521977710 @default.
- W4313559015 hasConcept C59593255 @default.
- W4313559015 hasConcept C62520636 @default.
- W4313559015 hasConcept C77088390 @default.
- W4313559015 hasConcept C9652623 @default.
- W4313559015 hasConcept C99844830 @default.
- W4313559015 hasConceptScore W4313559015C10803110 @default.
- W4313559015 hasConceptScore W4313559015C121332964 @default.
- W4313559015 hasConceptScore W4313559015C121864883 @default.
- W4313559015 hasConceptScore W4313559015C13662910 @default.
- W4313559015 hasConceptScore W4313559015C147597530 @default.
- W4313559015 hasConceptScore W4313559015C154945302 @default.
- W4313559015 hasConceptScore W4313559015C159467904 @default.
- W4313559015 hasConceptScore W4313559015C159985019 @default.
- W4313559015 hasConceptScore W4313559015C171250308 @default.
- W4313559015 hasConceptScore W4313559015C185592680 @default.
- W4313559015 hasConceptScore W4313559015C192562407 @default.
- W4313559015 hasConceptScore W4313559015C202444582 @default.
- W4313559015 hasConceptScore W4313559015C2524010 @default.
- W4313559015 hasConceptScore W4313559015C33923547 @default.
- W4313559015 hasConceptScore W4313559015C41008148 @default.
- W4313559015 hasConceptScore W4313559015C48044578 @default.
- W4313559015 hasConceptScore W4313559015C521977710 @default.
- W4313559015 hasConceptScore W4313559015C59593255 @default.
- W4313559015 hasConceptScore W4313559015C62520636 @default.
- W4313559015 hasConceptScore W4313559015C77088390 @default.
- W4313559015 hasConceptScore W4313559015C9652623 @default.
- W4313559015 hasConceptScore W4313559015C99844830 @default.
- W4313559015 hasLocation W43135590151 @default.
- W4313559015 hasLocation W43135590152 @default.
- W4313559015 hasOpenAccess W4313559015 @default.
- W4313559015 hasPrimaryLocation W43135590151 @default.
- W4313559015 hasRelatedWork W2038866483 @default.
- W4313559015 hasRelatedWork W2042638827 @default.
- W4313559015 hasRelatedWork W2089542300 @default.
- W4313559015 hasRelatedWork W2161972019 @default.
- W4313559015 hasRelatedWork W2162927785 @default.
- W4313559015 hasRelatedWork W2275464208 @default.
- W4313559015 hasRelatedWork W2276531496 @default.
- W4313559015 hasRelatedWork W2501841583 @default.
- W4313559015 hasRelatedWork W2791904540 @default.
- W4313559015 hasRelatedWork W2949190041 @default.
- W4313559015 isParatext "false" @default.
- W4313559015 isRetracted "false" @default.
- W4313559015 workType "article" @default.