Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313559145> ?p ?o ?g. }
- W4313559145 endingPage "964" @default.
- W4313559145 startingPage "964" @default.
- W4313559145 abstract "Forests are a vital part of the ecological system. Forest fires are a serious issue that may cause significant loss of life and infrastructure. Forest fires may occur due to human or man-made climate effects. Numerous artificial intelligence-based strategies such as machine learning (ML) and deep learning (DL) have helped researchers to predict forest fires. However, ML and DL strategies pose some challenges such as large multidimensional data, communication lags, transmission latency, lack of processing power, and privacy concerns. Federated Learning (FL) is a recent development in ML that enables the collection and process of multidimensional, large volumes of data efficiently, which has the potential to solve the aforementioned challenges. FL can also help in identifying the trends based on the geographical locations that can help the authorities to respond faster to forest fires. However, FL algorithms send and receive large amounts of weights of the client-side trained models, and also it induces significant communication overhead. To overcome this issue, in this paper, we propose a unified framework based on FL with a particle swarm-optimization algorithm (PSO) that enables the authorities to respond faster to forest fires. The proposed PSO-enabled FL framework is evaluated by using multidimensional forest fire image data from Kaggle. In comparison to the state-of-the-art federated average model, the proposed model performed better in situations of data imbalance, incurred lower communication costs, and thus proved to be more network efficient. The results of the proposed framework have been validated and 94.47% prediction accuracy has been recorded. These results obtained by the proposed framework can serve as a useful component in the development of early warning systems for forest fires." @default.
- W4313559145 created "2023-01-06" @default.
- W4313559145 creator A5041854978 @default.
- W4313559145 creator A5053810667 @default.
- W4313559145 date "2023-01-05" @default.
- W4313559145 modified "2023-09-30" @default.
- W4313559145 title "Particle Swarm-Based Federated Learning Approach for Early Detection of Forest Fires" @default.
- W4313559145 cites W2074574834 @default.
- W4313559145 cites W2152523941 @default.
- W4313559145 cites W2543580944 @default.
- W4313559145 cites W2573137292 @default.
- W4313559145 cites W2619012792 @default.
- W4313559145 cites W2906247484 @default.
- W4313559145 cites W2947137917 @default.
- W4313559145 cites W2963947170 @default.
- W4313559145 cites W2964163091 @default.
- W4313559145 cites W2975479989 @default.
- W4313559145 cites W2998269827 @default.
- W4313559145 cites W3009682973 @default.
- W4313559145 cites W3010068433 @default.
- W4313559145 cites W3040427204 @default.
- W4313559145 cites W3042863654 @default.
- W4313559145 cites W3080796432 @default.
- W4313559145 cites W3091870957 @default.
- W4313559145 cites W3091882159 @default.
- W4313559145 cites W3101159567 @default.
- W4313559145 cites W3113308842 @default.
- W4313559145 cites W3124851551 @default.
- W4313559145 cites W3125796803 @default.
- W4313559145 cites W3171802458 @default.
- W4313559145 cites W3198908542 @default.
- W4313559145 cites W3206162503 @default.
- W4313559145 cites W3212010319 @default.
- W4313559145 cites W3213215216 @default.
- W4313559145 cites W3213802103 @default.
- W4313559145 cites W4200529309 @default.
- W4313559145 cites W4206645239 @default.
- W4313559145 cites W4213193982 @default.
- W4313559145 cites W4213223813 @default.
- W4313559145 cites W4213436114 @default.
- W4313559145 cites W4220752280 @default.
- W4313559145 cites W4221042117 @default.
- W4313559145 cites W4225288504 @default.
- W4313559145 cites W4225396518 @default.
- W4313559145 cites W4285200068 @default.
- W4313559145 cites W4292295335 @default.
- W4313559145 cites W4293195474 @default.
- W4313559145 cites W4293525840 @default.
- W4313559145 cites W4296627427 @default.
- W4313559145 cites W4297347869 @default.
- W4313559145 cites W4306160208 @default.
- W4313559145 cites W4309947341 @default.
- W4313559145 cites W4310036640 @default.
- W4313559145 doi "https://doi.org/10.3390/su15020964" @default.
- W4313559145 hasPublicationYear "2023" @default.
- W4313559145 type Work @default.
- W4313559145 citedByCount "3" @default.
- W4313559145 countsByYear W43135591452023 @default.
- W4313559145 crossrefType "journal-article" @default.
- W4313559145 hasAuthorship W4313559145A5041854978 @default.
- W4313559145 hasAuthorship W4313559145A5053810667 @default.
- W4313559145 hasBestOaLocation W43135591451 @default.
- W4313559145 hasConcept C111919701 @default.
- W4313559145 hasConcept C119857082 @default.
- W4313559145 hasConcept C124101348 @default.
- W4313559145 hasConcept C154945302 @default.
- W4313559145 hasConcept C169258074 @default.
- W4313559145 hasConcept C2779960059 @default.
- W4313559145 hasConcept C41008148 @default.
- W4313559145 hasConcept C75684735 @default.
- W4313559145 hasConcept C85617194 @default.
- W4313559145 hasConcept C98045186 @default.
- W4313559145 hasConceptScore W4313559145C111919701 @default.
- W4313559145 hasConceptScore W4313559145C119857082 @default.
- W4313559145 hasConceptScore W4313559145C124101348 @default.
- W4313559145 hasConceptScore W4313559145C154945302 @default.
- W4313559145 hasConceptScore W4313559145C169258074 @default.
- W4313559145 hasConceptScore W4313559145C2779960059 @default.
- W4313559145 hasConceptScore W4313559145C41008148 @default.
- W4313559145 hasConceptScore W4313559145C75684735 @default.
- W4313559145 hasConceptScore W4313559145C85617194 @default.
- W4313559145 hasConceptScore W4313559145C98045186 @default.
- W4313559145 hasIssue "2" @default.
- W4313559145 hasLocation W43135591451 @default.
- W4313559145 hasLocation W43135591452 @default.
- W4313559145 hasOpenAccess W4313559145 @default.
- W4313559145 hasPrimaryLocation W43135591451 @default.
- W4313559145 hasRelatedWork W2911455822 @default.
- W4313559145 hasRelatedWork W3014300295 @default.
- W4313559145 hasRelatedWork W3174196512 @default.
- W4313559145 hasRelatedWork W3211546796 @default.
- W4313559145 hasRelatedWork W4281560664 @default.
- W4313559145 hasRelatedWork W4281616679 @default.
- W4313559145 hasRelatedWork W4293525103 @default.
- W4313559145 hasRelatedWork W4308191010 @default.
- W4313559145 hasRelatedWork W4318350883 @default.
- W4313559145 hasRelatedWork W4323021782 @default.
- W4313559145 hasVolume "15" @default.