Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313559863> ?p ?o ?g. }
- W4313559863 endingPage "110247" @default.
- W4313559863 startingPage "110247" @default.
- W4313559863 abstract "Image processing is an evolving field that calls for more powerful techniques to extract useful information from images. In particular, image segmentation is a preprocessing step that helps separate objects in a digital image. This article introduces an enhanced manta ray foraging optimizer (MRFO) based on two strategies – oppositional learning (OL) and vertical crossover (VC) search – for color image segmentation. This combination technique focuses on the enhancement of the explorative and exploitative cores, without compromising the computational speed. The proposed algorithm, termed OL-MRFO-VC, is integrated with Kapur entropy to identify the best threshold configuration in each image component (RGB). The technique is tested over three datasets consisting of different scenes. The threshold vector consists of both lower and higher levels in the experiments. In addition, OL-MRFO-VC is compared with fourteen competitive metaheuristics, and eleven measures are used to evaluate their performance quantitatively and qualitatively. According to the computational results, our proposed method outperforms state-of-the-art techniques, especially in the higher threshold levels. Furthermore, the p values in the Wilcoxon signed-rank test confirm a significant improvement brought by our proposed method, suggesting a superior capability of OL-MRFO-VC for solving image segmentation problems." @default.
- W4313559863 created "2023-01-06" @default.
- W4313559863 creator A5006485899 @default.
- W4313559863 creator A5021515016 @default.
- W4313559863 creator A5031184886 @default.
- W4313559863 creator A5042124823 @default.
- W4313559863 creator A5056251028 @default.
- W4313559863 date "2023-02-01" @default.
- W4313559863 modified "2023-10-12" @default.
- W4313559863 title "Manta ray foraging optimizer-based image segmentation with a two-strategy enhancement" @default.
- W4313559863 cites W1522440472 @default.
- W4313559863 cites W1965239040 @default.
- W4313559863 cites W1993885071 @default.
- W4313559863 cites W2001979953 @default.
- W4313559863 cites W2002260165 @default.
- W4313559863 cites W2014743688 @default.
- W4313559863 cites W2031183907 @default.
- W4313559863 cites W2046382188 @default.
- W4313559863 cites W2059471177 @default.
- W4313559863 cites W2065401134 @default.
- W4313559863 cites W2075752599 @default.
- W4313559863 cites W2077574606 @default.
- W4313559863 cites W2079595223 @default.
- W4313559863 cites W2083970667 @default.
- W4313559863 cites W2114770744 @default.
- W4313559863 cites W2121927366 @default.
- W4313559863 cites W2133059825 @default.
- W4313559863 cites W2133665775 @default.
- W4313559863 cites W2141983208 @default.
- W4313559863 cites W2143560894 @default.
- W4313559863 cites W2146439308 @default.
- W4313559863 cites W2151554678 @default.
- W4313559863 cites W2162745921 @default.
- W4313559863 cites W2164931791 @default.
- W4313559863 cites W2232317135 @default.
- W4313559863 cites W2290883490 @default.
- W4313559863 cites W2300017999 @default.
- W4313559863 cites W2340897893 @default.
- W4313559863 cites W2738900493 @default.
- W4313559863 cites W2902421512 @default.
- W4313559863 cites W2925456832 @default.
- W4313559863 cites W2938033784 @default.
- W4313559863 cites W2982453621 @default.
- W4313559863 cites W3003349567 @default.
- W4313559863 cites W3007907254 @default.
- W4313559863 cites W3009979760 @default.
- W4313559863 cites W3014974411 @default.
- W4313559863 cites W3028182033 @default.
- W4313559863 cites W3039175637 @default.
- W4313559863 cites W3041737808 @default.
- W4313559863 cites W3085801332 @default.
- W4313559863 cites W3096682064 @default.
- W4313559863 cites W3110062260 @default.
- W4313559863 cites W3116061545 @default.
- W4313559863 cites W3119466546 @default.
- W4313559863 cites W3121642757 @default.
- W4313559863 cites W3126944874 @default.
- W4313559863 cites W3133929890 @default.
- W4313559863 cites W3134651880 @default.
- W4313559863 cites W3154719286 @default.
- W4313559863 cites W3158217005 @default.
- W4313559863 cites W3159313141 @default.
- W4313559863 cites W3160473862 @default.
- W4313559863 cites W3162857826 @default.
- W4313559863 cites W3179669524 @default.
- W4313559863 cites W3193238958 @default.
- W4313559863 cites W3199883375 @default.
- W4313559863 cites W3201208428 @default.
- W4313559863 cites W3217604825 @default.
- W4313559863 cites W4205818380 @default.
- W4313559863 cites W4212881362 @default.
- W4313559863 cites W4224291424 @default.
- W4313559863 cites W4234632613 @default.
- W4313559863 cites W4285148558 @default.
- W4313559863 cites W4292479245 @default.
- W4313559863 doi "https://doi.org/10.1016/j.knosys.2022.110247" @default.
- W4313559863 hasPublicationYear "2023" @default.
- W4313559863 type Work @default.
- W4313559863 citedByCount "5" @default.
- W4313559863 countsByYear W43135598632023 @default.
- W4313559863 crossrefType "journal-article" @default.
- W4313559863 hasAuthorship W4313559863A5006485899 @default.
- W4313559863 hasAuthorship W4313559863A5021515016 @default.
- W4313559863 hasAuthorship W4313559863A5031184886 @default.
- W4313559863 hasAuthorship W4313559863A5042124823 @default.
- W4313559863 hasAuthorship W4313559863A5056251028 @default.
- W4313559863 hasConcept C105795698 @default.
- W4313559863 hasConcept C106301342 @default.
- W4313559863 hasConcept C115961682 @default.
- W4313559863 hasConcept C121332964 @default.
- W4313559863 hasConcept C124504099 @default.
- W4313559863 hasConcept C12868164 @default.
- W4313559863 hasConcept C153180895 @default.
- W4313559863 hasConcept C154945302 @default.
- W4313559863 hasConcept C206041023 @default.
- W4313559863 hasConcept C31972630 @default.
- W4313559863 hasConcept C33923547 @default.
- W4313559863 hasConcept C34736171 @default.