Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313561346> ?p ?o ?g. }
- W4313561346 endingPage "267" @default.
- W4313561346 startingPage "258" @default.
- W4313561346 abstract "Recently, solving ordinal classification problems using machine learning and deep learning techniques has acquired important attention. There are many real-world problems in different areas of knowledge where a categorical variable needs to be predicted, and the existing categories follow an order associated with the nature of the problem: e.g. medical diagnosis with different states of a disease, or industrial quality assessment with different levels of quality. In these problems, it is quite common that the final label for each sample is determined by a group of experts with different opinions, and all opinions are usually summarised in a single crisp label by means of a given statistic (e.g. the median or the mode). Applying standard ordinal classifiers to these crisp labels could result in overfitting, as the labelling information is considered as totally certain. In this work, we propose a unimodal regularisation approach based on soft labelling, i.e. the ordinal information is used to introduce the inherent uncertainty of the label fusion. Specifically, said regularisation is based on using triangular distributions to simulate the aforementioned fusion of the expert opinions, where a parameter is used to decide the amount of probability that is assigned to the target category and the adjacent ones (according to the ordinal scale). The strategy could be applied to the loss function used by any ordinal classification learning algorithm, but we focus on deep learning in this paper. The proposal is compared to a baseline approach for nominal classification tasks and other state-of-the-art unimodal regularisation methods, and the experimental validation includes six benchmark datasets and five performance metrics. The results along with the statistical analysis show that the proposed methodology significantly outperforms the rest of the methods." @default.
- W4313561346 created "2023-01-06" @default.
- W4313561346 creator A5011017248 @default.
- W4313561346 creator A5063964437 @default.
- W4313561346 creator A5079559737 @default.
- W4313561346 creator A5086980043 @default.
- W4313561346 date "2023-05-01" @default.
- W4313561346 modified "2023-10-18" @default.
- W4313561346 title "Soft labelling based on triangular distributions for ordinal classification" @default.
- W4313561346 cites W1965804146 @default.
- W4313561346 cites W1974971448 @default.
- W4313561346 cites W2000642020 @default.
- W4313561346 cites W2035820761 @default.
- W4313561346 cites W2043462999 @default.
- W4313561346 cites W2097117768 @default.
- W4313561346 cites W2110175536 @default.
- W4313561346 cites W2118525590 @default.
- W4313561346 cites W2194775991 @default.
- W4313561346 cites W2318802957 @default.
- W4313561346 cites W2510725918 @default.
- W4313561346 cites W2592232824 @default.
- W4313561346 cites W2612220790 @default.
- W4313561346 cites W2616031720 @default.
- W4313561346 cites W2885354784 @default.
- W4313561346 cites W2898242330 @default.
- W4313561346 cites W2918087949 @default.
- W4313561346 cites W2919115771 @default.
- W4313561346 cites W2929376427 @default.
- W4313561346 cites W2950978907 @default.
- W4313561346 cites W2963446712 @default.
- W4313561346 cites W2980737204 @default.
- W4313561346 cites W2998802446 @default.
- W4313561346 cites W3002674187 @default.
- W4313561346 cites W3008063828 @default.
- W4313561346 cites W3012560784 @default.
- W4313561346 cites W3087507349 @default.
- W4313561346 cites W3119904398 @default.
- W4313561346 cites W3120755852 @default.
- W4313561346 cites W3157246375 @default.
- W4313561346 cites W3198591403 @default.
- W4313561346 cites W3211522713 @default.
- W4313561346 cites W4205975458 @default.
- W4313561346 cites W4212884054 @default.
- W4313561346 cites W4220861777 @default.
- W4313561346 cites W4301596074 @default.
- W4313561346 doi "https://doi.org/10.1016/j.inffus.2023.01.003" @default.
- W4313561346 hasPublicationYear "2023" @default.
- W4313561346 type Work @default.
- W4313561346 citedByCount "3" @default.
- W4313561346 countsByYear W43135613462023 @default.
- W4313561346 crossrefType "journal-article" @default.
- W4313561346 hasAuthorship W4313561346A5011017248 @default.
- W4313561346 hasAuthorship W4313561346A5063964437 @default.
- W4313561346 hasAuthorship W4313561346A5079559737 @default.
- W4313561346 hasAuthorship W4313561346A5086980043 @default.
- W4313561346 hasBestOaLocation W43135613461 @default.
- W4313561346 hasConcept C105795698 @default.
- W4313561346 hasConcept C110313322 @default.
- W4313561346 hasConcept C119857082 @default.
- W4313561346 hasConcept C124101348 @default.
- W4313561346 hasConcept C153180895 @default.
- W4313561346 hasConcept C154945302 @default.
- W4313561346 hasConcept C22019652 @default.
- W4313561346 hasConcept C2909711754 @default.
- W4313561346 hasConcept C33923547 @default.
- W4313561346 hasConcept C41008148 @default.
- W4313561346 hasConcept C50644808 @default.
- W4313561346 hasConcept C5274069 @default.
- W4313561346 hasConcept C85461838 @default.
- W4313561346 hasConceptScore W4313561346C105795698 @default.
- W4313561346 hasConceptScore W4313561346C110313322 @default.
- W4313561346 hasConceptScore W4313561346C119857082 @default.
- W4313561346 hasConceptScore W4313561346C124101348 @default.
- W4313561346 hasConceptScore W4313561346C153180895 @default.
- W4313561346 hasConceptScore W4313561346C154945302 @default.
- W4313561346 hasConceptScore W4313561346C22019652 @default.
- W4313561346 hasConceptScore W4313561346C2909711754 @default.
- W4313561346 hasConceptScore W4313561346C33923547 @default.
- W4313561346 hasConceptScore W4313561346C41008148 @default.
- W4313561346 hasConceptScore W4313561346C50644808 @default.
- W4313561346 hasConceptScore W4313561346C5274069 @default.
- W4313561346 hasConceptScore W4313561346C85461838 @default.
- W4313561346 hasLocation W43135613461 @default.
- W4313561346 hasOpenAccess W4313561346 @default.
- W4313561346 hasPrimaryLocation W43135613461 @default.
- W4313561346 hasRelatedWork W1514069968 @default.
- W4313561346 hasRelatedWork W2046205578 @default.
- W4313561346 hasRelatedWork W2049018663 @default.
- W4313561346 hasRelatedWork W2054614394 @default.
- W4313561346 hasRelatedWork W2081126853 @default.
- W4313561346 hasRelatedWork W2139881679 @default.
- W4313561346 hasRelatedWork W2911701373 @default.
- W4313561346 hasRelatedWork W3125115491 @default.
- W4313561346 hasRelatedWork W1523029355 @default.
- W4313561346 hasRelatedWork W1743155748 @default.
- W4313561346 hasVolume "93" @default.
- W4313561346 isParatext "false" @default.
- W4313561346 isRetracted "false" @default.