Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313561629> ?p ?o ?g. }
- W4313561629 abstract "Discrimination of pain intensity using machine learning (ML) and electroencephalography (EEG) has significant potential for clinical applications, especially in scenarios where self-report is unsuitable. However, existing research is limited due to a lack of external validation (assessing performance using novel data). We aimed for the first external validation study for pain intensity classification with EEG. Pneumatic pressure stimuli were delivered to the fingernail bed at high and low pain intensities during two independent EEG experiments with healthy participants. Study one (n = 25) was utilised for training and cross-validation. Study two (n = 15) was used for external validation one (identical stimulation parameters to study one) and external validation two (new stimulation parameters). Time-frequency features of peri-stimulus EEG were computed on a single-trial basis for all electrodes. ML training and analysis were performed on a subset of features, identified through feature selection, which were distributed across scalp electrodes and included frontal, central, and parietal regions. Results demonstrated that ML models outperformed chance. The Random Forest (RF) achieved the greatest accuracies of 73.18, 68.32 and 60.42% for cross-validation, external validation one and two, respectively. Importantly, this research is the first to externally validate ML and EEG for the classification of intensity during experimental pain, demonstrating promising performance which generalises to novel samples and paradigms. These findings offer the most rigorous estimates of ML's clinical potential for pain classification." @default.
- W4313561629 created "2023-01-06" @default.
- W4313561629 creator A5015520139 @default.
- W4313561629 creator A5023631781 @default.
- W4313561629 creator A5027745647 @default.
- W4313561629 creator A5032629783 @default.
- W4313561629 creator A5034060653 @default.
- W4313561629 creator A5068728622 @default.
- W4313561629 creator A5074881187 @default.
- W4313561629 date "2023-01-05" @default.
- W4313561629 modified "2023-10-02" @default.
- W4313561629 title "External validation of binary machine learning models for pain intensity perception classification from EEG in healthy individuals" @default.
- W4313561629 cites W154377515 @default.
- W4313561629 cites W163619944 @default.
- W4313561629 cites W1901616594 @default.
- W4313561629 cites W1912773523 @default.
- W4313561629 cites W1964694219 @default.
- W4313561629 cites W1969266319 @default.
- W4313561629 cites W1971331210 @default.
- W4313561629 cites W1971828591 @default.
- W4313561629 cites W1982679032 @default.
- W4313561629 cites W1986762730 @default.
- W4313561629 cites W1992263765 @default.
- W4313561629 cites W1993063736 @default.
- W4313561629 cites W1996020380 @default.
- W4313561629 cites W1998139571 @default.
- W4313561629 cites W1999045083 @default.
- W4313561629 cites W2014587614 @default.
- W4313561629 cites W2015602085 @default.
- W4313561629 cites W2017144821 @default.
- W4313561629 cites W2022909014 @default.
- W4313561629 cites W2025912864 @default.
- W4313561629 cites W2026049606 @default.
- W4313561629 cites W2028252490 @default.
- W4313561629 cites W2040734893 @default.
- W4313561629 cites W2049220046 @default.
- W4313561629 cites W2052684349 @default.
- W4313561629 cites W2076573082 @default.
- W4313561629 cites W2078271269 @default.
- W4313561629 cites W2085281262 @default.
- W4313561629 cites W2087733543 @default.
- W4313561629 cites W2095987352 @default.
- W4313561629 cites W2109173536 @default.
- W4313561629 cites W2119910794 @default.
- W4313561629 cites W2128495200 @default.
- W4313561629 cites W2129906762 @default.
- W4313561629 cites W2131215403 @default.
- W4313561629 cites W2132284897 @default.
- W4313561629 cites W2137802101 @default.
- W4313561629 cites W2138261897 @default.
- W4313561629 cites W2138964882 @default.
- W4313561629 cites W2141007997 @default.
- W4313561629 cites W2151591509 @default.
- W4313561629 cites W2153035821 @default.
- W4313561629 cites W2156567596 @default.
- W4313561629 cites W2166102382 @default.
- W4313561629 cites W2170505850 @default.
- W4313561629 cites W2225109326 @default.
- W4313561629 cites W2293237290 @default.
- W4313561629 cites W2302120737 @default.
- W4313561629 cites W2315409255 @default.
- W4313561629 cites W2337480639 @default.
- W4313561629 cites W2338203180 @default.
- W4313561629 cites W2338589777 @default.
- W4313561629 cites W2344325609 @default.
- W4313561629 cites W2490913924 @default.
- W4313561629 cites W2515214979 @default.
- W4313561629 cites W2559302726 @default.
- W4313561629 cites W2560103205 @default.
- W4313561629 cites W2562251009 @default.
- W4313561629 cites W2564157307 @default.
- W4313561629 cites W2740752542 @default.
- W4313561629 cites W2756291343 @default.
- W4313561629 cites W2757765264 @default.
- W4313561629 cites W2762658547 @default.
- W4313561629 cites W2765890301 @default.
- W4313561629 cites W2766511862 @default.
- W4313561629 cites W2769191685 @default.
- W4313561629 cites W2773944606 @default.
- W4313561629 cites W2785184350 @default.
- W4313561629 cites W2798421489 @default.
- W4313561629 cites W2893188281 @default.
- W4313561629 cites W2897848143 @default.
- W4313561629 cites W2909302325 @default.
- W4313561629 cites W2913997948 @default.
- W4313561629 cites W2919115771 @default.
- W4313561629 cites W2963899699 @default.
- W4313561629 cites W2967998970 @default.
- W4313561629 cites W2968336341 @default.
- W4313561629 cites W2969096242 @default.
- W4313561629 cites W2981679558 @default.
- W4313561629 cites W2994958466 @default.
- W4313561629 cites W2995098893 @default.
- W4313561629 cites W2996390213 @default.
- W4313561629 cites W2996480032 @default.
- W4313561629 cites W3000211149 @default.
- W4313561629 cites W3002456183 @default.
- W4313561629 cites W3005801323 @default.
- W4313561629 cites W3007453563 @default.
- W4313561629 cites W3012589689 @default.