Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313562458> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313562458 abstract "Regular monitoring of critical electrical infrastructure is a necessary but laborious task to ensure infrastructure resilience. Typically, a worker must perform the inspection on site, following a checklist. The advent of highly instrumented autonomous vehicles provides an opportunity to automate inspections through repurposing of sensors typically used for navigation. Furthermore, the high frequency of data capture from passing cars can provide unprecedented temporal resolution for monitoring critical infrastructure. Motivated by this opportunity, we here evaluate the state of the art in deep learning algorithms for segmentation of critical electrical infrastructure from ground-based image, which differs from other studies that have largely focused on aerial images. Google Street View (GSV) images are used as a proxy for images captured by vision-based autonomous vehicles to evaluate two state-of-the-art models. ACU-Net, originally trained on power line segmentation from unmanned aerial vehicle (UAV) imagery, is here adapted for use on ground-based imagery. Similarly, HRNet-OCR, a scene segmentation model for ground-based imagery, is used to simultaneously capture both power utility poles and powerlines. This study demonstrates that models trained exclusively on wires or power poles can be successfully adapted for a segmentation of the complete critical electrical infrastructure as a step towards fully automated inspection and increased infrastructure resilience. Wire and pole annotations from our GSV images are shared here." @default.
- W4313562458 created "2023-01-06" @default.
- W4313562458 creator A5001027044 @default.
- W4313562458 creator A5008505786 @default.
- W4313562458 creator A5017668310 @default.
- W4313562458 creator A5038274566 @default.
- W4313562458 creator A5078223816 @default.
- W4313562458 date "2022-12-05" @default.
- W4313562458 modified "2023-10-05" @default.
- W4313562458 title "Deep Learning for Segmentation of Critical Electrical Infrastructure from Vehicle-Based Images" @default.
- W4313562458 cites W2134361702 @default.
- W4313562458 cites W2162089259 @default.
- W4313562458 cites W2194775991 @default.
- W4313562458 cites W2340897893 @default.
- W4313562458 cites W2781228439 @default.
- W4313562458 cites W2803533787 @default.
- W4313562458 cites W2886499001 @default.
- W4313562458 cites W2904810076 @default.
- W4313562458 cites W2909309670 @default.
- W4313562458 cites W2910615003 @default.
- W4313562458 cites W2913729879 @default.
- W4313562458 cites W2916798096 @default.
- W4313562458 cites W2970139856 @default.
- W4313562458 cites W2981218143 @default.
- W4313562458 cites W2990580785 @default.
- W4313562458 cites W3105860898 @default.
- W4313562458 cites W3126274075 @default.
- W4313562458 cites W3156655103 @default.
- W4313562458 cites W3187480419 @default.
- W4313562458 cites W3189800552 @default.
- W4313562458 cites W3216841986 @default.
- W4313562458 cites W4224305309 @default.
- W4313562458 cites W4226183856 @default.
- W4313562458 doi "https://doi.org/10.1109/epec56903.2022.10000098" @default.
- W4313562458 hasPublicationYear "2022" @default.
- W4313562458 type Work @default.
- W4313562458 citedByCount "1" @default.
- W4313562458 countsByYear W43135624582023 @default.
- W4313562458 crossrefType "proceedings-article" @default.
- W4313562458 hasAuthorship W4313562458A5001027044 @default.
- W4313562458 hasAuthorship W4313562458A5008505786 @default.
- W4313562458 hasAuthorship W4313562458A5017668310 @default.
- W4313562458 hasAuthorship W4313562458A5038274566 @default.
- W4313562458 hasAuthorship W4313562458A5078223816 @default.
- W4313562458 hasConcept C108583219 @default.
- W4313562458 hasConcept C121332964 @default.
- W4313562458 hasConcept C124504099 @default.
- W4313562458 hasConcept C154945302 @default.
- W4313562458 hasConcept C2779585090 @default.
- W4313562458 hasConcept C29852176 @default.
- W4313562458 hasConcept C31972630 @default.
- W4313562458 hasConcept C38652104 @default.
- W4313562458 hasConcept C41008148 @default.
- W4313562458 hasConcept C54355233 @default.
- W4313562458 hasConcept C59519942 @default.
- W4313562458 hasConcept C79403827 @default.
- W4313562458 hasConcept C86803240 @default.
- W4313562458 hasConcept C89600930 @default.
- W4313562458 hasConcept C97355855 @default.
- W4313562458 hasConceptScore W4313562458C108583219 @default.
- W4313562458 hasConceptScore W4313562458C121332964 @default.
- W4313562458 hasConceptScore W4313562458C124504099 @default.
- W4313562458 hasConceptScore W4313562458C154945302 @default.
- W4313562458 hasConceptScore W4313562458C2779585090 @default.
- W4313562458 hasConceptScore W4313562458C29852176 @default.
- W4313562458 hasConceptScore W4313562458C31972630 @default.
- W4313562458 hasConceptScore W4313562458C38652104 @default.
- W4313562458 hasConceptScore W4313562458C41008148 @default.
- W4313562458 hasConceptScore W4313562458C54355233 @default.
- W4313562458 hasConceptScore W4313562458C59519942 @default.
- W4313562458 hasConceptScore W4313562458C79403827 @default.
- W4313562458 hasConceptScore W4313562458C86803240 @default.
- W4313562458 hasConceptScore W4313562458C89600930 @default.
- W4313562458 hasConceptScore W4313562458C97355855 @default.
- W4313562458 hasLocation W43135624581 @default.
- W4313562458 hasOpenAccess W4313562458 @default.
- W4313562458 hasPrimaryLocation W43135624581 @default.
- W4313562458 hasRelatedWork W1669643531 @default.
- W4313562458 hasRelatedWork W2005437358 @default.
- W4313562458 hasRelatedWork W2008656436 @default.
- W4313562458 hasRelatedWork W2023558673 @default.
- W4313562458 hasRelatedWork W2134924024 @default.
- W4313562458 hasRelatedWork W2517104666 @default.
- W4313562458 hasRelatedWork W2790662084 @default.
- W4313562458 hasRelatedWork W3101676691 @default.
- W4313562458 hasRelatedWork W4220882927 @default.
- W4313562458 hasRelatedWork W4285827401 @default.
- W4313562458 isParatext "false" @default.
- W4313562458 isRetracted "false" @default.
- W4313562458 workType "article" @default.