Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313563281> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4313563281 abstract "This paper proposed a deep reinforcement learning based reference speed planning strategy to co-optimize the fuel economy, driving safety, and travel efficiency of connected and automated hybrid electric vehicles in urban scenarios. Thus, in this work, a connected traffic environment is first developed based on Simulation Urban Mobility (SUMO) to simulate real-world urban scenarios. Then a deep reinforcement learning agent is designed based on a twin delayed deep deterministic policy gradient algorithm (TD3). It can quickly solve the reference speed according to the ego vehicle state and traffic information. In addition, by developing a rule-based safety module and integrating it into the reward function, the TD3 agent can be facilitated to learn safety car-following policies and adhere to traffic light rules. Finally, simulation results indicate that the proposed strategy can efficiently and safely control the ego vehicles in complex urban scenarios with signalized intersections. And the fuel consumption of the proposed strategy is reduced by about 15% compared with that of the intelligent driver model based speed planning strategy." @default.
- W4313563281 created "2023-01-06" @default.
- W4313563281 creator A5013540603 @default.
- W4313563281 creator A5052558370 @default.
- W4313563281 creator A5068252474 @default.
- W4313563281 date "2022-11-01" @default.
- W4313563281 modified "2023-10-10" @default.
- W4313563281 title "Speed planning for connected and automated vehicles in urban scenarios using deep reinforcement learning" @default.
- W4313563281 cites W1965455100 @default.
- W4313563281 cites W1972044564 @default.
- W4313563281 cites W2064122102 @default.
- W4313563281 cites W2136624896 @default.
- W4313563281 cites W2561463613 @default.
- W4313563281 cites W2618149076 @default.
- W4313563281 cites W2793593059 @default.
- W4313563281 cites W2903709398 @default.
- W4313563281 cites W2974353929 @default.
- W4313563281 cites W2988595664 @default.
- W4313563281 cites W3006292884 @default.
- W4313563281 cites W3030245181 @default.
- W4313563281 cites W3122029173 @default.
- W4313563281 cites W3124068447 @default.
- W4313563281 cites W3209912263 @default.
- W4313563281 cites W4211199708 @default.
- W4313563281 cites W4224220201 @default.
- W4313563281 doi "https://doi.org/10.1109/vppc55846.2022.10003458" @default.
- W4313563281 hasPublicationYear "2022" @default.
- W4313563281 type Work @default.
- W4313563281 citedByCount "0" @default.
- W4313563281 crossrefType "proceedings-article" @default.
- W4313563281 hasAuthorship W4313563281A5013540603 @default.
- W4313563281 hasAuthorship W4313563281A5052558370 @default.
- W4313563281 hasAuthorship W4313563281A5068252474 @default.
- W4313563281 hasConcept C127413603 @default.
- W4313563281 hasConcept C154945302 @default.
- W4313563281 hasConcept C171146098 @default.
- W4313563281 hasConcept C41008148 @default.
- W4313563281 hasConcept C44154836 @default.
- W4313563281 hasConcept C45882903 @default.
- W4313563281 hasConcept C81074085 @default.
- W4313563281 hasConcept C90509273 @default.
- W4313563281 hasConcept C97541855 @default.
- W4313563281 hasConceptScore W4313563281C127413603 @default.
- W4313563281 hasConceptScore W4313563281C154945302 @default.
- W4313563281 hasConceptScore W4313563281C171146098 @default.
- W4313563281 hasConceptScore W4313563281C41008148 @default.
- W4313563281 hasConceptScore W4313563281C44154836 @default.
- W4313563281 hasConceptScore W4313563281C45882903 @default.
- W4313563281 hasConceptScore W4313563281C81074085 @default.
- W4313563281 hasConceptScore W4313563281C90509273 @default.
- W4313563281 hasConceptScore W4313563281C97541855 @default.
- W4313563281 hasFunder F4320335777 @default.
- W4313563281 hasLocation W43135632811 @default.
- W4313563281 hasOpenAccess W4313563281 @default.
- W4313563281 hasPrimaryLocation W43135632811 @default.
- W4313563281 hasRelatedWork W2313032867 @default.
- W4313563281 hasRelatedWork W2367648559 @default.
- W4313563281 hasRelatedWork W2367907680 @default.
- W4313563281 hasRelatedWork W2761137780 @default.
- W4313563281 hasRelatedWork W2791174895 @default.
- W4313563281 hasRelatedWork W2910752022 @default.
- W4313563281 hasRelatedWork W4297880050 @default.
- W4313563281 hasRelatedWork W4312513666 @default.
- W4313563281 hasRelatedWork W4380487529 @default.
- W4313563281 hasRelatedWork W572715804 @default.
- W4313563281 isParatext "false" @default.
- W4313563281 isRetracted "false" @default.
- W4313563281 workType "article" @default.