Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313563649> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4313563649 abstract "Software requirement classification is a longstanding and important problem in requirement engineering. Previous studies have applied various machine learning techniques for this problem, including Support Vector Machine (SVM) and decision trees. With the recent popularity of NLP technique, the state-of-the-art approach NoRBERT utilizes the pre-trained language model BERT and achieves a satisfactory performance. However, the dataset PROMISE used by the existing approaches for this problem consists of only hundreds of requirements that are outdated according to today’s technology and market trends. Besides, the NLP technique applied in these approaches might be obsolete. In this paper, we propose an approach of prompt learning for requirement classification using BERT-based pretrained language models (PRCBERT), which applies flexible prompt templates to achieve accurate requirements classification. Experiments conducted on two existing small-size requirement datasets (PROMISE and NFR-Review) and our collected large-scale requirement dataset NFR-SO prove that PRCBERT exhibits moderately better classification performance than NoRBERT and MLM-BERT (BERT with the standard prompt template). On the de-labeled NFR-Review and NFR-SO datasets, Trans_PRCBERT (the version of PRCBERT which is fine-tuned on PROMISE) is able to have a satisfactory zero-shot performance with 53.27% and 72.96% F1-score when enabling a self-learning strategy." @default.
- W4313563649 created "2023-01-06" @default.
- W4313563649 creator A5010290885 @default.
- W4313563649 creator A5025652176 @default.
- W4313563649 creator A5028641941 @default.
- W4313563649 creator A5083669929 @default.
- W4313563649 date "2022-10-10" @default.
- W4313563649 modified "2023-10-08" @default.
- W4313563649 title "PRCBERT: Prompt Learning for Requirement Classification using BERT-based Pretrained Language Models" @default.
- W4313563649 cites W2250560707 @default.
- W4313563649 cites W2470673105 @default.
- W4313563649 cites W2517194566 @default.
- W4313563649 cites W2740721704 @default.
- W4313563649 cites W2769041395 @default.
- W4313563649 cites W2810197415 @default.
- W4313563649 cites W2896852262 @default.
- W4313563649 cites W2944919635 @default.
- W4313563649 cites W2963059063 @default.
- W4313563649 cites W2963854351 @default.
- W4313563649 cites W2963938169 @default.
- W4313563649 cites W2963951265 @default.
- W4313563649 cites W2964110616 @default.
- W4313563649 cites W2964223283 @default.
- W4313563649 cites W3014636167 @default.
- W4313563649 cites W3087413080 @default.
- W4313563649 cites W3091973425 @default.
- W4313563649 cites W3153389197 @default.
- W4313563649 cites W3153427360 @default.
- W4313563649 cites W3158607471 @default.
- W4313563649 cites W3162044134 @default.
- W4313563649 cites W3172642864 @default.
- W4313563649 cites W3215722946 @default.
- W4313563649 cites W3216699912 @default.
- W4313563649 cites W4229772528 @default.
- W4313563649 cites W4251641598 @default.
- W4313563649 doi "https://doi.org/10.1145/3551349.3560417" @default.
- W4313563649 hasPublicationYear "2022" @default.
- W4313563649 type Work @default.
- W4313563649 citedByCount "4" @default.
- W4313563649 countsByYear W43135636492023 @default.
- W4313563649 crossrefType "proceedings-article" @default.
- W4313563649 hasAuthorship W4313563649A5010290885 @default.
- W4313563649 hasAuthorship W4313563649A5025652176 @default.
- W4313563649 hasAuthorship W4313563649A5028641941 @default.
- W4313563649 hasAuthorship W4313563649A5083669929 @default.
- W4313563649 hasBestOaLocation W43135636491 @default.
- W4313563649 hasConcept C119857082 @default.
- W4313563649 hasConcept C12267149 @default.
- W4313563649 hasConcept C137293760 @default.
- W4313563649 hasConcept C154945302 @default.
- W4313563649 hasConcept C15744967 @default.
- W4313563649 hasConcept C2780586970 @default.
- W4313563649 hasConcept C41008148 @default.
- W4313563649 hasConcept C77805123 @default.
- W4313563649 hasConceptScore W4313563649C119857082 @default.
- W4313563649 hasConceptScore W4313563649C12267149 @default.
- W4313563649 hasConceptScore W4313563649C137293760 @default.
- W4313563649 hasConceptScore W4313563649C154945302 @default.
- W4313563649 hasConceptScore W4313563649C15744967 @default.
- W4313563649 hasConceptScore W4313563649C2780586970 @default.
- W4313563649 hasConceptScore W4313563649C41008148 @default.
- W4313563649 hasConceptScore W4313563649C77805123 @default.
- W4313563649 hasLocation W43135636491 @default.
- W4313563649 hasOpenAccess W4313563649 @default.
- W4313563649 hasPrimaryLocation W43135636491 @default.
- W4313563649 hasRelatedWork W2961085424 @default.
- W4313563649 hasRelatedWork W3046775127 @default.
- W4313563649 hasRelatedWork W3107602296 @default.
- W4313563649 hasRelatedWork W3170094116 @default.
- W4313563649 hasRelatedWork W3209574120 @default.
- W4313563649 hasRelatedWork W4210805261 @default.
- W4313563649 hasRelatedWork W4306674287 @default.
- W4313563649 hasRelatedWork W4312192474 @default.
- W4313563649 hasRelatedWork W4386462264 @default.
- W4313563649 hasRelatedWork W4387297750 @default.
- W4313563649 isParatext "false" @default.
- W4313563649 isRetracted "false" @default.
- W4313563649 workType "article" @default.