Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313565310> ?p ?o ?g. }
- W4313565310 abstract "Since the beginning of Bayesian nonparametrics in the early 1970s, there has been a wide interest in constructing models for binary response data. Such data arise naturally in problems dealing with bioassay, current status data and sensitivity testing, and are equivalent to left and right censored observations if the inputs are one-dimensional. For models based on the Dirichlet process, inference is possible via Markov chain Monte Carlo (MCMC) simulations. However, there exist multiple processes based on different principles, for which such MCMC-based methods fail. Examples include logistic Gaussian processes and quantile pyramids. These require MCMC for posterior inference given exact observations, and thus become intractable when the data comprise both left and right censored observations. Here we present a new importance sampling algorithm for nonparametric models given exchangeable binary response data. It can be applied to any model from which samples can be generated, or even only approximately generated. The main idea behind the algorithm is to exploit the symmetries introduced by exchangeability. Calculating the importance weights turns out to be equivalent to evaluating the permanent of a certain class of (0,1)-matrix, which we prove can be done in polynomial time by deriving an explicit algorithm." @default.
- W4313565310 created "2023-01-06" @default.
- W4313565310 creator A5034593036 @default.
- W4313565310 date "2022-01-01" @default.
- W4313565310 modified "2023-10-18" @default.
- W4313565310 title "Inference for Bayesian Nonparametric Models with Binary Response Data via Permutation Counting" @default.
- W4313565310 cites W1528242606 @default.
- W4313565310 cites W1548584376 @default.
- W4313565310 cites W1967687583 @default.
- W4313565310 cites W1975317051 @default.
- W4313565310 cites W1978655847 @default.
- W4313565310 cites W1979969656 @default.
- W4313565310 cites W1987532879 @default.
- W4313565310 cites W1988362870 @default.
- W4313565310 cites W1989290862 @default.
- W4313565310 cites W2003706076 @default.
- W4313565310 cites W2006912660 @default.
- W4313565310 cites W2016511206 @default.
- W4313565310 cites W2020117232 @default.
- W4313565310 cites W2029031299 @default.
- W4313565310 cites W2031964861 @default.
- W4313565310 cites W2043306693 @default.
- W4313565310 cites W2047274445 @default.
- W4313565310 cites W2048370764 @default.
- W4313565310 cites W2050076340 @default.
- W4313565310 cites W2055936398 @default.
- W4313565310 cites W2063390378 @default.
- W4313565310 cites W2065392216 @default.
- W4313565310 cites W2069429561 @default.
- W4313565310 cites W2071300976 @default.
- W4313565310 cites W2072169887 @default.
- W4313565310 cites W2075053067 @default.
- W4313565310 cites W2077490998 @default.
- W4313565310 cites W2080972498 @default.
- W4313565310 cites W2083795796 @default.
- W4313565310 cites W2091180152 @default.
- W4313565310 cites W2091797506 @default.
- W4313565310 cites W2094509095 @default.
- W4313565310 cites W2101998432 @default.
- W4313565310 cites W2108306139 @default.
- W4313565310 cites W2118942461 @default.
- W4313565310 cites W2139812092 @default.
- W4313565310 cites W2146915717 @default.
- W4313565310 cites W2153132192 @default.
- W4313565310 cites W2162469599 @default.
- W4313565310 cites W2164162051 @default.
- W4313565310 cites W2169522807 @default.
- W4313565310 cites W2281756567 @default.
- W4313565310 cites W2510099899 @default.
- W4313565310 cites W2810973755 @default.
- W4313565310 cites W2990142458 @default.
- W4313565310 cites W3035656905 @default.
- W4313565310 cites W3103396039 @default.
- W4313565310 cites W3104513669 @default.
- W4313565310 cites W3106012925 @default.
- W4313565310 cites W3141349955 @default.
- W4313565310 cites W3147894994 @default.
- W4313565310 cites W4210731599 @default.
- W4313565310 cites W4211049957 @default.
- W4313565310 cites W4212863985 @default.
- W4313565310 cites W4243285511 @default.
- W4313565310 cites W4293241248 @default.
- W4313565310 doi "https://doi.org/10.1214/22-ba1353" @default.
- W4313565310 hasPublicationYear "2022" @default.
- W4313565310 type Work @default.
- W4313565310 citedByCount "0" @default.
- W4313565310 crossrefType "journal-article" @default.
- W4313565310 hasAuthorship W4313565310A5034593036 @default.
- W4313565310 hasBestOaLocation W43135653101 @default.
- W4313565310 hasConcept C105795698 @default.
- W4313565310 hasConcept C107673813 @default.
- W4313565310 hasConcept C111350023 @default.
- W4313565310 hasConcept C11413529 @default.
- W4313565310 hasConcept C118671147 @default.
- W4313565310 hasConcept C154945302 @default.
- W4313565310 hasConcept C2776214188 @default.
- W4313565310 hasConcept C2779190172 @default.
- W4313565310 hasConcept C2781280628 @default.
- W4313565310 hasConcept C33923547 @default.
- W4313565310 hasConcept C41008148 @default.
- W4313565310 hasConcept C48372109 @default.
- W4313565310 hasConcept C94375191 @default.
- W4313565310 hasConceptScore W4313565310C105795698 @default.
- W4313565310 hasConceptScore W4313565310C107673813 @default.
- W4313565310 hasConceptScore W4313565310C111350023 @default.
- W4313565310 hasConceptScore W4313565310C11413529 @default.
- W4313565310 hasConceptScore W4313565310C118671147 @default.
- W4313565310 hasConceptScore W4313565310C154945302 @default.
- W4313565310 hasConceptScore W4313565310C2776214188 @default.
- W4313565310 hasConceptScore W4313565310C2779190172 @default.
- W4313565310 hasConceptScore W4313565310C2781280628 @default.
- W4313565310 hasConceptScore W4313565310C33923547 @default.
- W4313565310 hasConceptScore W4313565310C41008148 @default.
- W4313565310 hasConceptScore W4313565310C48372109 @default.
- W4313565310 hasConceptScore W4313565310C94375191 @default.
- W4313565310 hasIssue "-1" @default.
- W4313565310 hasLocation W43135653101 @default.
- W4313565310 hasOpenAccess W4313565310 @default.
- W4313565310 hasPrimaryLocation W43135653101 @default.
- W4313565310 hasRelatedWork W1602838358 @default.