Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313566527> ?p ?o ?g. }
- W4313566527 endingPage "1135" @default.
- W4313566527 startingPage "1112" @default.
- W4313566527 abstract "Abstract The seismic design and assessment of steel moment resisting frames (SMRFs) rely heavily on drifts. It is unsurprising, therefore, that several simplified methods have been proposed to predict lateral deformations in SMRFs, ranging from the purely mechanics‐based to the wholly data‐driven, which aim to alleviate the structural engineer's burden of conducting detailed nonlinear analyses either as part of preliminary design iterations or during regional seismic assessments. While many of these methods have been incorporated in design codes or are commonly used in research, they all suffer from a lack of consideration of the causal link between the seismic hazard level and the ground‐motion suite used for their formulation. In this paper, we propose hybrid data‐driven models that preserve this critical relationship of hazard‐consistency. To this end, we assemble a large database of non‐linear response history analyses (NRHA) on 24 SMRFs of different structural characteristics. These structural models are subjected to 816 ground‐motion records whose occurrence rates and spectral shapes are selected to ensure the hazard consistency of our outputs. Two sites with different seismic hazards are examined to enable comparisons under different seismic demands. An initial examination of the resulting drift hazard curves allows us to re‐visit the influence of salient structural modelling assumptions such as plastic resistance, geometric configurations and joint deterioration modelling. This is followed by a machine learning (ML)‐guided feature selection process that considers structural and seismic parameters as well as key static response features, hence the hybrid nature of our models. New models for inter‐storey drift and roof displacements are then developed. A comparison with currently available formulations highlights the significant levels of overestimation associated with previously proposed non‐hazard consistent models." @default.
- W4313566527 created "2023-01-06" @default.
- W4313566527 creator A5005602165 @default.
- W4313566527 creator A5034236240 @default.
- W4313566527 creator A5065175116 @default.
- W4313566527 date "2023-01-05" @default.
- W4313566527 modified "2023-09-30" @default.
- W4313566527 title "Hybrid data‐driven hazard‐consistent drift models for SMRF" @default.
- W4313566527 cites W1544090161 @default.
- W4313566527 cites W1864586938 @default.
- W4313566527 cites W1875061881 @default.
- W4313566527 cites W1963777170 @default.
- W4313566527 cites W1964391379 @default.
- W4313566527 cites W1966065216 @default.
- W4313566527 cites W1974718305 @default.
- W4313566527 cites W2002427523 @default.
- W4313566527 cites W2019374468 @default.
- W4313566527 cites W2045127487 @default.
- W4313566527 cites W2068850457 @default.
- W4313566527 cites W2068980086 @default.
- W4313566527 cites W2079729400 @default.
- W4313566527 cites W2082179468 @default.
- W4313566527 cites W2088833819 @default.
- W4313566527 cites W2102201073 @default.
- W4313566527 cites W2107736106 @default.
- W4313566527 cites W2130035713 @default.
- W4313566527 cites W2135803167 @default.
- W4313566527 cites W2136517734 @default.
- W4313566527 cites W2138775645 @default.
- W4313566527 cites W2141234150 @default.
- W4313566527 cites W2141806675 @default.
- W4313566527 cites W2143481518 @default.
- W4313566527 cites W2167996923 @default.
- W4313566527 cites W2170261448 @default.
- W4313566527 cites W2553964565 @default.
- W4313566527 cites W2569557400 @default.
- W4313566527 cites W2577028151 @default.
- W4313566527 cites W2781133456 @default.
- W4313566527 cites W2799462250 @default.
- W4313566527 cites W2803340018 @default.
- W4313566527 cites W2886210008 @default.
- W4313566527 cites W2895307640 @default.
- W4313566527 cites W2896787198 @default.
- W4313566527 cites W2908468497 @default.
- W4313566527 cites W2911964244 @default.
- W4313566527 cites W2946752227 @default.
- W4313566527 cites W2961209623 @default.
- W4313566527 cites W2967240387 @default.
- W4313566527 cites W2996435229 @default.
- W4313566527 cites W3089282370 @default.
- W4313566527 cites W3136631225 @default.
- W4313566527 cites W3148740774 @default.
- W4313566527 cites W3155257921 @default.
- W4313566527 cites W3170916512 @default.
- W4313566527 cites W4200402120 @default.
- W4313566527 cites W4200586778 @default.
- W4313566527 cites W4212969648 @default.
- W4313566527 cites W4220696506 @default.
- W4313566527 cites W4256669726 @default.
- W4313566527 cites W4294795824 @default.
- W4313566527 cites W4296123444 @default.
- W4313566527 doi "https://doi.org/10.1002/eqe.3807" @default.
- W4313566527 hasPublicationYear "2023" @default.
- W4313566527 type Work @default.
- W4313566527 citedByCount "3" @default.
- W4313566527 countsByYear W43135665272023 @default.
- W4313566527 crossrefType "journal-article" @default.
- W4313566527 hasAuthorship W4313566527A5005602165 @default.
- W4313566527 hasAuthorship W4313566527A5034236240 @default.
- W4313566527 hasAuthorship W4313566527A5065175116 @default.
- W4313566527 hasBestOaLocation W43135665271 @default.
- W4313566527 hasConcept C103711010 @default.
- W4313566527 hasConcept C111919701 @default.
- W4313566527 hasConcept C121332964 @default.
- W4313566527 hasConcept C124101348 @default.
- W4313566527 hasConcept C127413603 @default.
- W4313566527 hasConcept C134512083 @default.
- W4313566527 hasConcept C147176958 @default.
- W4313566527 hasConcept C154945302 @default.
- W4313566527 hasConcept C158622935 @default.
- W4313566527 hasConcept C178790620 @default.
- W4313566527 hasConcept C179254644 @default.
- W4313566527 hasConcept C185592680 @default.
- W4313566527 hasConcept C2776436953 @default.
- W4313566527 hasConcept C2780719617 @default.
- W4313566527 hasConcept C2988284105 @default.
- W4313566527 hasConcept C41008148 @default.
- W4313566527 hasConcept C49261128 @default.
- W4313566527 hasConcept C62520636 @default.
- W4313566527 hasConcept C66938386 @default.
- W4313566527 hasConcept C69361100 @default.
- W4313566527 hasConcept C74650414 @default.
- W4313566527 hasConcept C8128475 @default.
- W4313566527 hasConcept C98045186 @default.
- W4313566527 hasConceptScore W4313566527C103711010 @default.
- W4313566527 hasConceptScore W4313566527C111919701 @default.
- W4313566527 hasConceptScore W4313566527C121332964 @default.
- W4313566527 hasConceptScore W4313566527C124101348 @default.