Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313572811> ?p ?o ?g. }
- W4313572811 abstract "Abstract Background Gene network inference (GNI) methods have the potential to reveal functional relationships between different genes and their products. Most GNI algorithms have been developed for microarray gene expression datasets and their application to RNA-seq data is relatively recent. As the characteristics of RNA-seq data are different from microarray data, it is an unanswered question what preprocessing methods for RNA-seq data should be applied prior to GNI to attain optimal performance, or what the required sample size for RNA-seq data is to obtain reliable GNI estimates. Results We ran 9144 analysis of 7 different RNA-seq datasets to evaluate 300 different preprocessing combinations that include data transformations, normalizations and association estimators. We found that there was no single best performing preprocessing combination but that there were several good ones. The performance varied widely over various datasets, which emphasized the importance of choosing an appropriate preprocessing configuration before GNI. Two preprocessing combinations appeared promising in general: First, Log-2 TPM (transcript per million) with Variance-stabilizing transformation (VST) and Pearson Correlation Coefficient (PCC) association estimator. Second, raw RNA-seq count data with PCC. Along with these two, we also identified 18 other good preprocessing combinations. Any of these algorithms might perform best in different datasets. Therefore, the GNI performances of these approaches should be measured on any new dataset to select the best performing one for it. In terms of the required biological sample size of RNA-seq data, we found that between 30 to 85 samples were required to generate reliable GNI estimates. Conclusions This study provides practical recommendations on default choices for data preprocessing prior to GNI analysis of RNA-seq data to obtain optimal performance results." @default.
- W4313572811 created "2023-01-06" @default.
- W4313572811 creator A5023547268 @default.
- W4313572811 creator A5055573840 @default.
- W4313572811 creator A5063944626 @default.
- W4313572811 date "2023-01-03" @default.
- W4313572811 modified "2023-10-16" @default.
- W4313572811 title "RNA-seq preprocessing and sample size considerations for gene network inference" @default.
- W4313572811 cites W1569946922 @default.
- W4313572811 cites W1635484243 @default.
- W4313572811 cites W1872324379 @default.
- W4313572811 cites W1966327575 @default.
- W4313572811 cites W1984708728 @default.
- W4313572811 cites W1992452843 @default.
- W4313572811 cites W1994018858 @default.
- W4313572811 cites W2008067936 @default.
- W4313572811 cites W2013156169 @default.
- W4313572811 cites W2018365867 @default.
- W4313572811 cites W2034368202 @default.
- W4313572811 cites W2035385395 @default.
- W4313572811 cites W2048677619 @default.
- W4313572811 cites W2052685738 @default.
- W4313572811 cites W2066502238 @default.
- W4313572811 cites W2079517420 @default.
- W4313572811 cites W2094558888 @default.
- W4313572811 cites W2094792719 @default.
- W4313572811 cites W2095867585 @default.
- W4313572811 cites W2107018762 @default.
- W4313572811 cites W2110417468 @default.
- W4313572811 cites W2112534124 @default.
- W4313572811 cites W2114104545 @default.
- W4313572811 cites W2114748166 @default.
- W4313572811 cites W2120865735 @default.
- W4313572811 cites W2122863289 @default.
- W4313572811 cites W2130116522 @default.
- W4313572811 cites W2130410032 @default.
- W4313572811 cites W2130687290 @default.
- W4313572811 cites W2137526110 @default.
- W4313572811 cites W2148043260 @default.
- W4313572811 cites W2150022898 @default.
- W4313572811 cites W2152239989 @default.
- W4313572811 cites W2153467314 @default.
- W4313572811 cites W2161467890 @default.
- W4313572811 cites W2161868542 @default.
- W4313572811 cites W2163485494 @default.
- W4313572811 cites W2164298117 @default.
- W4313572811 cites W2165253681 @default.
- W4313572811 cites W2165909549 @default.
- W4313572811 cites W2166043581 @default.
- W4313572811 cites W2169001731 @default.
- W4313572811 cites W2179438025 @default.
- W4313572811 cites W2226446765 @default.
- W4313572811 cites W2288204109 @default.
- W4313572811 cites W2334793565 @default.
- W4313572811 cites W2403934794 @default.
- W4313572811 cites W2429031812 @default.
- W4313572811 cites W2470168301 @default.
- W4313572811 cites W2471249441 @default.
- W4313572811 cites W2510474575 @default.
- W4313572811 cites W2580612620 @default.
- W4313572811 cites W2606715885 @default.
- W4313572811 cites W3099289621 @default.
- W4313572811 cites W4212903522 @default.
- W4313572811 doi "https://doi.org/10.1101/2023.01.02.522518" @default.
- W4313572811 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36711979" @default.
- W4313572811 hasPublicationYear "2023" @default.
- W4313572811 type Work @default.
- W4313572811 citedByCount "0" @default.
- W4313572811 crossrefType "posted-content" @default.
- W4313572811 hasAuthorship W4313572811A5023547268 @default.
- W4313572811 hasAuthorship W4313572811A5055573840 @default.
- W4313572811 hasAuthorship W4313572811A5063944626 @default.
- W4313572811 hasBestOaLocation W43135728111 @default.
- W4313572811 hasConcept C105795698 @default.
- W4313572811 hasConcept C124101348 @default.
- W4313572811 hasConcept C129848803 @default.
- W4313572811 hasConcept C154945302 @default.
- W4313572811 hasConcept C185429906 @default.
- W4313572811 hasConcept C185592680 @default.
- W4313572811 hasConcept C198531522 @default.
- W4313572811 hasConcept C2776214188 @default.
- W4313572811 hasConcept C33923547 @default.
- W4313572811 hasConcept C34736171 @default.
- W4313572811 hasConcept C41008148 @default.
- W4313572811 hasConcept C43617362 @default.
- W4313572811 hasConcept C70721500 @default.
- W4313572811 hasConcept C86803240 @default.
- W4313572811 hasConceptScore W4313572811C105795698 @default.
- W4313572811 hasConceptScore W4313572811C124101348 @default.
- W4313572811 hasConceptScore W4313572811C129848803 @default.
- W4313572811 hasConceptScore W4313572811C154945302 @default.
- W4313572811 hasConceptScore W4313572811C185429906 @default.
- W4313572811 hasConceptScore W4313572811C185592680 @default.
- W4313572811 hasConceptScore W4313572811C198531522 @default.
- W4313572811 hasConceptScore W4313572811C2776214188 @default.
- W4313572811 hasConceptScore W4313572811C33923547 @default.
- W4313572811 hasConceptScore W4313572811C34736171 @default.
- W4313572811 hasConceptScore W4313572811C41008148 @default.
- W4313572811 hasConceptScore W4313572811C43617362 @default.
- W4313572811 hasConceptScore W4313572811C70721500 @default.