Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313573046> ?p ?o ?g. }
- W4313573046 endingPage "610" @default.
- W4313573046 startingPage "610" @default.
- W4313573046 abstract "Trait anxiety relates to the steady propensity to experience and report negative emotions and thoughts such as fear and worries across different situations, along with a stable perception of the environment as characterized by threatening stimuli. Previous studies have tried to investigate neuroanatomical features related to anxiety mostly using univariate analyses and thus giving rise to contrasting results. The aim of this study is to build a predictive model of individual differences in trait anxiety from brain morphometric features, by taking advantage of a combined data fusion machine learning approach to allow generalization to new cases. Additionally, we aimed to perform a network analysis to test the hypothesis that anxiety-related networks have a central role in modulating other networks not strictly associated with anxiety. Finally, we wanted to test the hypothesis that trait anxiety was associated with specific cognitive emotion regulation strategies, and whether anxiety may decrease with ageing. Structural brain images of 158 participants were first decomposed into independent covarying gray and white matter networks with a data fusion unsupervised machine learning approach (Parallel ICA). Then, supervised machine learning (decision tree) and backward regression were used to extract and test the generalizability of a predictive model of trait anxiety. Two covarying gray and white matter independent networks successfully predicted trait anxiety. The first network included mainly parietal and temporal regions such as the postcentral gyrus, the precuneus, and the middle and superior temporal gyrus, while the second network included frontal and parietal regions such as the superior and middle temporal gyrus, the anterior cingulate, and the precuneus. We also found that trait anxiety was positively associated with catastrophizing, rumination, other- and self-blame, and negatively associated with positive refocusing and reappraisal. Moreover, trait anxiety was negatively associated with age. This paper provides new insights regarding the prediction of individual differences in trait anxiety from brain and psychological features and can pave the way for future diagnostic predictive models of anxiety." @default.
- W4313573046 created "2023-01-06" @default.
- W4313573046 creator A5001583886 @default.
- W4313573046 creator A5026420389 @default.
- W4313573046 creator A5031074197 @default.
- W4313573046 creator A5086963031 @default.
- W4313573046 date "2023-01-05" @default.
- W4313573046 modified "2023-10-14" @default.
- W4313573046 title "Anxious Brains: A Combined Data Fusion Machine Learning Approach to Predict Trait Anxiety from Morphometric Features" @default.
- W4313573046 cites W1492296876 @default.
- W4313573046 cites W1527084800 @default.
- W4313573046 cites W1790118405 @default.
- W4313573046 cites W1970829108 @default.
- W4313573046 cites W1985472839 @default.
- W4313573046 cites W1992474739 @default.
- W4313573046 cites W1997222702 @default.
- W4313573046 cites W1997491128 @default.
- W4313573046 cites W2005147092 @default.
- W4313573046 cites W2006748710 @default.
- W4313573046 cites W2013526581 @default.
- W4313573046 cites W2016023958 @default.
- W4313573046 cites W2016117011 @default.
- W4313573046 cites W2018427967 @default.
- W4313573046 cites W2018735264 @default.
- W4313573046 cites W2027181254 @default.
- W4313573046 cites W2030071466 @default.
- W4313573046 cites W2037148864 @default.
- W4313573046 cites W2046024437 @default.
- W4313573046 cites W2048892587 @default.
- W4313573046 cites W2049511110 @default.
- W4313573046 cites W2050291692 @default.
- W4313573046 cites W2054136196 @default.
- W4313573046 cites W2055112536 @default.
- W4313573046 cites W2060716693 @default.
- W4313573046 cites W2061230345 @default.
- W4313573046 cites W2068673705 @default.
- W4313573046 cites W2087527212 @default.
- W4313573046 cites W2089804984 @default.
- W4313573046 cites W2090664364 @default.
- W4313573046 cites W2096710051 @default.
- W4313573046 cites W2098919617 @default.
- W4313573046 cites W2106870230 @default.
- W4313573046 cites W2109601901 @default.
- W4313573046 cites W2111581842 @default.
- W4313573046 cites W2112011323 @default.
- W4313573046 cites W2115247350 @default.
- W4313573046 cites W2118637843 @default.
- W4313573046 cites W2122102786 @default.
- W4313573046 cites W2122682759 @default.
- W4313573046 cites W2123923307 @default.
- W4313573046 cites W2125823313 @default.
- W4313573046 cites W2137811349 @default.
- W4313573046 cites W2140013971 @default.
- W4313573046 cites W2143114368 @default.
- W4313573046 cites W2147546041 @default.
- W4313573046 cites W2149966221 @default.
- W4313573046 cites W2155298532 @default.
- W4313573046 cites W2158304818 @default.
- W4313573046 cites W2167482691 @default.
- W4313573046 cites W2169473752 @default.
- W4313573046 cites W2185698185 @default.
- W4313573046 cites W2276466620 @default.
- W4313573046 cites W2522854891 @default.
- W4313573046 cites W2531323317 @default.
- W4313573046 cites W2585979806 @default.
- W4313573046 cites W2712198267 @default.
- W4313573046 cites W2804164821 @default.
- W4313573046 cites W2807739537 @default.
- W4313573046 cites W2892146376 @default.
- W4313573046 cites W2894013570 @default.
- W4313573046 cites W2900063989 @default.
- W4313573046 cites W2900917761 @default.
- W4313573046 cites W2901312180 @default.
- W4313573046 cites W2905640665 @default.
- W4313573046 cites W2909308425 @default.
- W4313573046 cites W2913095566 @default.
- W4313573046 cites W2914251233 @default.
- W4313573046 cites W2915029848 @default.
- W4313573046 cites W2944120510 @default.
- W4313573046 cites W2948302121 @default.
- W4313573046 cites W2949269842 @default.
- W4313573046 cites W2949812321 @default.
- W4313573046 cites W2970957161 @default.
- W4313573046 cites W2990531785 @default.
- W4313573046 cites W2993430556 @default.
- W4313573046 cites W3015560666 @default.
- W4313573046 cites W3022915913 @default.
- W4313573046 cites W3039829621 @default.
- W4313573046 cites W3089022094 @default.
- W4313573046 cites W3098661502 @default.
- W4313573046 cites W3100093480 @default.
- W4313573046 cites W3134747182 @default.
- W4313573046 cites W3135127702 @default.
- W4313573046 cites W3138414983 @default.
- W4313573046 cites W3159085565 @default.
- W4313573046 cites W3181719997 @default.
- W4313573046 cites W3188528884 @default.
- W4313573046 cites W3195258776 @default.