Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313573048> ?p ?o ?g. }
- W4313573048 endingPage "275" @default.
- W4313573048 startingPage "275" @default.
- W4313573048 abstract "Multi-label classification as a data mining task has recently attracted increasing interest from researchers. Many current data mining applications address problems with instances that belong to more than one category. These problems require the development of new, efficient methods. Multi-label k-nearest neighbors rule, ML-kNN, is among the best-performing methods for multi-label problems. Current methods use a unique k value for all labels, as in the single-label method. However, the distributions of the labels are frequently very different. In such scenarios, a unique k value for the labels might be suboptimal. In this paper, we propose a novel approach in which each label is predicted with a different value of k. Obtaining the best k for each label is stated as an optimization problem. Three different algorithms are proposed for this task, depending on which multi-label metric is the target of our optimization process. In a large set of 40 real-world multi-label problems, our approach improves the results of two different tested ML-kNN implementations." @default.
- W4313573048 created "2023-01-06" @default.
- W4313573048 creator A5011401194 @default.
- W4313573048 creator A5044439635 @default.
- W4313573048 date "2023-01-05" @default.
- W4313573048 modified "2023-09-27" @default.
- W4313573048 title "ML-k’sNN: Label Dependent k Values for Multi-Label k-Nearest Neighbor Rule" @default.
- W4313573048 cites W1473627731 @default.
- W4313573048 cites W1514048016 @default.
- W4313573048 cites W1773286549 @default.
- W4313573048 cites W2004362343 @default.
- W4313573048 cites W2023126929 @default.
- W4313573048 cites W2023294425 @default.
- W4313573048 cites W2046194813 @default.
- W4313573048 cites W2052684427 @default.
- W4313573048 cites W2070556583 @default.
- W4313573048 cites W2110549418 @default.
- W4313573048 cites W2114315281 @default.
- W4313573048 cites W2119466907 @default.
- W4313573048 cites W2133223948 @default.
- W4313573048 cites W2135547590 @default.
- W4313573048 cites W2143149208 @default.
- W4313573048 cites W2156935079 @default.
- W4313573048 cites W2158724449 @default.
- W4313573048 cites W2253239179 @default.
- W4313573048 cites W2474319957 @default.
- W4313573048 cites W2552670347 @default.
- W4313573048 cites W2778359823 @default.
- W4313573048 cites W2793659452 @default.
- W4313573048 cites W2802953259 @default.
- W4313573048 cites W2804834692 @default.
- W4313573048 cites W2809513330 @default.
- W4313573048 cites W2889897443 @default.
- W4313573048 cites W2972959495 @default.
- W4313573048 cites W2998019206 @default.
- W4313573048 cites W2998301895 @default.
- W4313573048 cites W3015464002 @default.
- W4313573048 cites W3039423007 @default.
- W4313573048 cites W3094343696 @default.
- W4313573048 cites W3129918875 @default.
- W4313573048 cites W3136209691 @default.
- W4313573048 cites W4200055642 @default.
- W4313573048 cites W4206053816 @default.
- W4313573048 cites W4211106661 @default.
- W4313573048 cites W4225324043 @default.
- W4313573048 cites W4304184587 @default.
- W4313573048 doi "https://doi.org/10.3390/math11020275" @default.
- W4313573048 hasPublicationYear "2023" @default.
- W4313573048 type Work @default.
- W4313573048 citedByCount "1" @default.
- W4313573048 countsByYear W43135730482023 @default.
- W4313573048 crossrefType "journal-article" @default.
- W4313573048 hasAuthorship W4313573048A5011401194 @default.
- W4313573048 hasAuthorship W4313573048A5044439635 @default.
- W4313573048 hasBestOaLocation W43135730481 @default.
- W4313573048 hasConcept C111919701 @default.
- W4313573048 hasConcept C113238511 @default.
- W4313573048 hasConcept C11413529 @default.
- W4313573048 hasConcept C119857082 @default.
- W4313573048 hasConcept C124101348 @default.
- W4313573048 hasConcept C153180895 @default.
- W4313573048 hasConcept C154945302 @default.
- W4313573048 hasConcept C162324750 @default.
- W4313573048 hasConcept C176217482 @default.
- W4313573048 hasConcept C177264268 @default.
- W4313573048 hasConcept C187736073 @default.
- W4313573048 hasConcept C199360897 @default.
- W4313573048 hasConcept C21547014 @default.
- W4313573048 hasConcept C2776291640 @default.
- W4313573048 hasConcept C2776482837 @default.
- W4313573048 hasConcept C2780451532 @default.
- W4313573048 hasConcept C41008148 @default.
- W4313573048 hasConcept C98045186 @default.
- W4313573048 hasConceptScore W4313573048C111919701 @default.
- W4313573048 hasConceptScore W4313573048C113238511 @default.
- W4313573048 hasConceptScore W4313573048C11413529 @default.
- W4313573048 hasConceptScore W4313573048C119857082 @default.
- W4313573048 hasConceptScore W4313573048C124101348 @default.
- W4313573048 hasConceptScore W4313573048C153180895 @default.
- W4313573048 hasConceptScore W4313573048C154945302 @default.
- W4313573048 hasConceptScore W4313573048C162324750 @default.
- W4313573048 hasConceptScore W4313573048C176217482 @default.
- W4313573048 hasConceptScore W4313573048C177264268 @default.
- W4313573048 hasConceptScore W4313573048C187736073 @default.
- W4313573048 hasConceptScore W4313573048C199360897 @default.
- W4313573048 hasConceptScore W4313573048C21547014 @default.
- W4313573048 hasConceptScore W4313573048C2776291640 @default.
- W4313573048 hasConceptScore W4313573048C2776482837 @default.
- W4313573048 hasConceptScore W4313573048C2780451532 @default.
- W4313573048 hasConceptScore W4313573048C41008148 @default.
- W4313573048 hasConceptScore W4313573048C98045186 @default.
- W4313573048 hasIssue "2" @default.
- W4313573048 hasLocation W43135730481 @default.
- W4313573048 hasLocation W43135730482 @default.
- W4313573048 hasOpenAccess W4313573048 @default.
- W4313573048 hasPrimaryLocation W43135730481 @default.
- W4313573048 hasRelatedWork W2126100045 @default.
- W4313573048 hasRelatedWork W2146076056 @default.