Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313573052> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4313573052 endingPage "236" @default.
- W4313573052 startingPage "236" @default.
- W4313573052 abstract "Experimental and computational data and field data obtained from measurements are often sparse and noisy. Consequently, interpolating unknown functions under these restrictions to provide accurate predictions is very challenging. This study compares machine-learning methods and cubic splines on the sparsity of training data they can handle, especially when training samples are noisy. We compare deviation from a true function f using the mean square error, signal-to-noise ratio and the Pearson R2 coefficient. We show that, given very sparse data, cubic splines constitute a more precise interpolation method than deep neural networks and multivariate adaptive regression splines. In contrast, machine-learning models are robust to noise and can outperform splines after a training data threshold is met. Our study aims to provide a general framework for interpolating one-dimensional signals, often the result of complex scientific simulations or laboratory experiments." @default.
- W4313573052 created "2023-01-06" @default.
- W4313573052 creator A5049956256 @default.
- W4313573052 creator A5051701548 @default.
- W4313573052 creator A5074003964 @default.
- W4313573052 creator A5086465022 @default.
- W4313573052 date "2023-01-03" @default.
- W4313573052 modified "2023-10-13" @default.
- W4313573052 title "Machine-Learning Methods on Noisy and Sparse Data" @default.
- W4313573052 cites W1498436455 @default.
- W4313573052 cites W1973108135 @default.
- W4313573052 cites W1990381576 @default.
- W4313573052 cites W1996367882 @default.
- W4313573052 cites W2010315761 @default.
- W4313573052 cites W2030275442 @default.
- W4313573052 cites W2041976578 @default.
- W4313573052 cites W2076110561 @default.
- W4313573052 cites W2089498782 @default.
- W4313573052 cites W2092015529 @default.
- W4313573052 cites W2097453622 @default.
- W4313573052 cites W2128873947 @default.
- W4313573052 cites W2569576300 @default.
- W4313573052 cites W2795982117 @default.
- W4313573052 cites W2901400877 @default.
- W4313573052 cites W2962777873 @default.
- W4313573052 cites W2963568027 @default.
- W4313573052 cites W2974293251 @default.
- W4313573052 cites W2997634643 @default.
- W4313573052 cites W3009386672 @default.
- W4313573052 cites W3011493638 @default.
- W4313573052 cites W3040549215 @default.
- W4313573052 cites W3044709444 @default.
- W4313573052 cites W3091998706 @default.
- W4313573052 cites W3157363721 @default.
- W4313573052 cites W3162775926 @default.
- W4313573052 cites W4206603601 @default.
- W4313573052 doi "https://doi.org/10.3390/math11010236" @default.
- W4313573052 hasPublicationYear "2023" @default.
- W4313573052 type Work @default.
- W4313573052 citedByCount "14" @default.
- W4313573052 countsByYear W43135730522023 @default.
- W4313573052 crossrefType "journal-article" @default.
- W4313573052 hasAuthorship W4313573052A5049956256 @default.
- W4313573052 hasAuthorship W4313573052A5051701548 @default.
- W4313573052 hasAuthorship W4313573052A5074003964 @default.
- W4313573052 hasAuthorship W4313573052A5086465022 @default.
- W4313573052 hasBestOaLocation W43135730521 @default.
- W4313573052 hasConcept C104114177 @default.
- W4313573052 hasConcept C105795698 @default.
- W4313573052 hasConcept C11413529 @default.
- W4313573052 hasConcept C115961682 @default.
- W4313573052 hasConcept C119857082 @default.
- W4313573052 hasConcept C137800194 @default.
- W4313573052 hasConcept C139945424 @default.
- W4313573052 hasConcept C153180895 @default.
- W4313573052 hasConcept C154945302 @default.
- W4313573052 hasConcept C33923547 @default.
- W4313573052 hasConcept C41008148 @default.
- W4313573052 hasConcept C50644808 @default.
- W4313573052 hasConcept C99498987 @default.
- W4313573052 hasConceptScore W4313573052C104114177 @default.
- W4313573052 hasConceptScore W4313573052C105795698 @default.
- W4313573052 hasConceptScore W4313573052C11413529 @default.
- W4313573052 hasConceptScore W4313573052C115961682 @default.
- W4313573052 hasConceptScore W4313573052C119857082 @default.
- W4313573052 hasConceptScore W4313573052C137800194 @default.
- W4313573052 hasConceptScore W4313573052C139945424 @default.
- W4313573052 hasConceptScore W4313573052C153180895 @default.
- W4313573052 hasConceptScore W4313573052C154945302 @default.
- W4313573052 hasConceptScore W4313573052C33923547 @default.
- W4313573052 hasConceptScore W4313573052C41008148 @default.
- W4313573052 hasConceptScore W4313573052C50644808 @default.
- W4313573052 hasConceptScore W4313573052C99498987 @default.
- W4313573052 hasFunder F4320338279 @default.
- W4313573052 hasIssue "1" @default.
- W4313573052 hasLocation W43135730521 @default.
- W4313573052 hasOpenAccess W4313573052 @default.
- W4313573052 hasPrimaryLocation W43135730521 @default.
- W4313573052 hasRelatedWork W2161295375 @default.
- W4313573052 hasRelatedWork W2961085424 @default.
- W4313573052 hasRelatedWork W2995227436 @default.
- W4313573052 hasRelatedWork W3046775127 @default.
- W4313573052 hasRelatedWork W3170094116 @default.
- W4313573052 hasRelatedWork W4285260836 @default.
- W4313573052 hasRelatedWork W4286629047 @default.
- W4313573052 hasRelatedWork W4306321456 @default.
- W4313573052 hasRelatedWork W4306674287 @default.
- W4313573052 hasRelatedWork W4224009465 @default.
- W4313573052 hasVolume "11" @default.
- W4313573052 isParatext "false" @default.
- W4313573052 isRetracted "false" @default.
- W4313573052 workType "article" @default.