Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313573196> ?p ?o ?g. }
- W4313573196 endingPage "276" @default.
- W4313573196 startingPage "276" @default.
- W4313573196 abstract "In this study, we use a new approach, known as the Aboodh residual power series method (ARPSM), in order to obtain the analytical results of the Black–Scholes differential equations (BSDEs), which are prime for judgment of European call and put options on a non-dividend-paying stock, especially when they consist of time-fractional derivatives. The fractional derivative is considered in the Caputo sense. This approach is a combination of the Aboodh transform and the residual power series method (RPSM). The suggested approach is based on a new version of Taylor’s series that generates a convergent series as a solution. The advantage of our strategy is that we can use the Aboodh transform operator to transform the fractional differential equation into an algebraic equation, which decreases the amount of computation required to obtain the solution in a subsequent algebraic step. The primary aspect of the proposed approach is how easily it computes the coefficients of terms in a series solution using the simple limit at infinity concept. In the RPSM, unknown coefficients in series solutions must be determined using the fractional derivative, and other well-known approximate analytical approaches like variational iteration, Adomian decomposition, and homotopy perturbation require the integration operators, which is challenging in the fractional case. Moreover, this approach solves problems without the need for He’s polynomials and Adomian polynomials, so the small size of computation is the strength of this approach, which is an advantage over various series solution methods. The efficiency of the suggested approach is verified by results in graphs and numerical data. The recurrence errors at various levels of the fractional derivative are utilized to demonstrate the convergence evidence for the approximative solution to the exact solution. The comparison study is established in terms of the absolute errors of the approximate and exact solutions. We come to the conclusion that our approach is simple to apply and accurate based on the findings." @default.
- W4313573196 created "2023-01-06" @default.
- W4313573196 creator A5009886472 @default.
- W4313573196 creator A5069906818 @default.
- W4313573196 creator A5084821839 @default.
- W4313573196 date "2023-01-05" @default.
- W4313573196 modified "2023-10-17" @default.
- W4313573196 title "Analytical Investigation of Some Time-Fractional Black–Scholes Models by the Aboodh Residual Power Series Method" @default.
- W4313573196 cites W2012698396 @default.
- W4313573196 cites W2015726575 @default.
- W4313573196 cites W2020586633 @default.
- W4313573196 cites W2022691550 @default.
- W4313573196 cites W2046582724 @default.
- W4313573196 cites W2057949621 @default.
- W4313573196 cites W2064886578 @default.
- W4313573196 cites W2105294776 @default.
- W4313573196 cites W2625182672 @default.
- W4313573196 cites W2725016723 @default.
- W4313573196 cites W2795839441 @default.
- W4313573196 cites W2807734377 @default.
- W4313573196 cites W2809148555 @default.
- W4313573196 cites W2883631367 @default.
- W4313573196 cites W2885789775 @default.
- W4313573196 cites W2892660620 @default.
- W4313573196 cites W2901489633 @default.
- W4313573196 cites W2901900441 @default.
- W4313573196 cites W2923788693 @default.
- W4313573196 cites W2945965899 @default.
- W4313573196 cites W2948463461 @default.
- W4313573196 cites W2959237220 @default.
- W4313573196 cites W2978166210 @default.
- W4313573196 cites W2987928114 @default.
- W4313573196 cites W2994787573 @default.
- W4313573196 cites W2996650249 @default.
- W4313573196 cites W2997223357 @default.
- W4313573196 cites W3001935612 @default.
- W4313573196 cites W3014951111 @default.
- W4313573196 cites W3031775166 @default.
- W4313573196 cites W3085263604 @default.
- W4313573196 cites W3085291162 @default.
- W4313573196 cites W3093695082 @default.
- W4313573196 cites W3124235528 @default.
- W4313573196 cites W3160443605 @default.
- W4313573196 cites W3163975797 @default.
- W4313573196 cites W3203557144 @default.
- W4313573196 cites W3215725018 @default.
- W4313573196 cites W4206965047 @default.
- W4313573196 cites W4220921702 @default.
- W4313573196 cites W4281695977 @default.
- W4313573196 cites W4281813699 @default.
- W4313573196 cites W4285745336 @default.
- W4313573196 cites W4291121625 @default.
- W4313573196 doi "https://doi.org/10.3390/math11020276" @default.
- W4313573196 hasPublicationYear "2023" @default.
- W4313573196 type Work @default.
- W4313573196 citedByCount "2" @default.
- W4313573196 countsByYear W43135731962023 @default.
- W4313573196 crossrefType "journal-article" @default.
- W4313573196 hasAuthorship W4313573196A5009886472 @default.
- W4313573196 hasAuthorship W4313573196A5069906818 @default.
- W4313573196 hasAuthorship W4313573196A5084821839 @default.
- W4313573196 hasBestOaLocation W43135731961 @default.
- W4313573196 hasConcept C1115519 @default.
- W4313573196 hasConcept C11413529 @default.
- W4313573196 hasConcept C118615104 @default.
- W4313573196 hasConcept C120317633 @default.
- W4313573196 hasConcept C134306372 @default.
- W4313573196 hasConcept C143724316 @default.
- W4313573196 hasConcept C151730666 @default.
- W4313573196 hasConcept C154249771 @default.
- W4313573196 hasConcept C155512373 @default.
- W4313573196 hasConcept C158946198 @default.
- W4313573196 hasConcept C2778258933 @default.
- W4313573196 hasConcept C28826006 @default.
- W4313573196 hasConcept C33923547 @default.
- W4313573196 hasConcept C73905626 @default.
- W4313573196 hasConcept C78045399 @default.
- W4313573196 hasConcept C86803240 @default.
- W4313573196 hasConceptScore W4313573196C1115519 @default.
- W4313573196 hasConceptScore W4313573196C11413529 @default.
- W4313573196 hasConceptScore W4313573196C118615104 @default.
- W4313573196 hasConceptScore W4313573196C120317633 @default.
- W4313573196 hasConceptScore W4313573196C134306372 @default.
- W4313573196 hasConceptScore W4313573196C143724316 @default.
- W4313573196 hasConceptScore W4313573196C151730666 @default.
- W4313573196 hasConceptScore W4313573196C154249771 @default.
- W4313573196 hasConceptScore W4313573196C155512373 @default.
- W4313573196 hasConceptScore W4313573196C158946198 @default.
- W4313573196 hasConceptScore W4313573196C2778258933 @default.
- W4313573196 hasConceptScore W4313573196C28826006 @default.
- W4313573196 hasConceptScore W4313573196C33923547 @default.
- W4313573196 hasConceptScore W4313573196C73905626 @default.
- W4313573196 hasConceptScore W4313573196C78045399 @default.
- W4313573196 hasConceptScore W4313573196C86803240 @default.
- W4313573196 hasIssue "2" @default.
- W4313573196 hasLocation W43135731961 @default.
- W4313573196 hasOpenAccess W4313573196 @default.
- W4313573196 hasPrimaryLocation W43135731961 @default.