Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313573631> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4313573631 abstract "This paper focuses on the content and emotive features of four politicians' posts that were published on their official Twitter accounts during the three-month period of the russian invasion of Ukraine. We selected two British politicians – Boris Johnson, the Prime Minister of the UK, and Yvette Cooper, the Labour MP and Shadow Home Secretary of the State for the Home Department – as well as two American politicians, President Joe Biden and Republican senator Marco Rubio. In the first phase, we identified the most frequent lexical tokens used by the politicians to inform the world community about the war in Ukraine. For this purpose, we used Voyant Tools, a web-based application for text analysis. These tokens were divided into three groups according to the level of their frequency. Additionally, we measured the distribution of the most frequent lexical tokens across the three-month time span. In the next phase, we analysed the context of the identified lexical tokens, thereby outlining the subject of the tweets. To do this, we extracted collocations using the Natural Language Toolkit (NLTK) library. During the final phase of the research, we performed topic modelling using the Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model (GSDMM) and emotion analysis using the NRC Lexicon library." @default.
- W4313573631 created "2023-01-06" @default.
- W4313573631 creator A5008561181 @default.
- W4313573631 creator A5071544747 @default.
- W4313573631 date "2022-12-26" @default.
- W4313573631 modified "2023-10-01" @default.
- W4313573631 title "Topic modelling and emotion analysis of the tweets of British and American politicians on the topic of war in Ukraine" @default.
- W4313573631 cites W2061922307 @default.
- W4313573631 cites W3035792438 @default.
- W4313573631 cites W4251372957 @default.
- W4313573631 cites W4284960486 @default.
- W4313573631 doi "https://doi.org/10.29038/eejpl.2022.9.2.kar" @default.
- W4313573631 hasPublicationYear "2022" @default.
- W4313573631 type Work @default.
- W4313573631 citedByCount "0" @default.
- W4313573631 crossrefType "journal-article" @default.
- W4313573631 hasAuthorship W4313573631A5008561181 @default.
- W4313573631 hasAuthorship W4313573631A5071544747 @default.
- W4313573631 hasBestOaLocation W43135736311 @default.
- W4313573631 hasConcept C107038049 @default.
- W4313573631 hasConcept C126706616 @default.
- W4313573631 hasConcept C138885662 @default.
- W4313573631 hasConcept C142362112 @default.
- W4313573631 hasConcept C144024400 @default.
- W4313573631 hasConcept C154945302 @default.
- W4313573631 hasConcept C166957645 @default.
- W4313573631 hasConcept C19165224 @default.
- W4313573631 hasConcept C204321447 @default.
- W4313573631 hasConcept C2776215170 @default.
- W4313573631 hasConcept C2778121359 @default.
- W4313573631 hasConcept C2779343474 @default.
- W4313573631 hasConcept C2779901982 @default.
- W4313573631 hasConcept C2781291010 @default.
- W4313573631 hasConcept C29595303 @default.
- W4313573631 hasConcept C41008148 @default.
- W4313573631 hasConcept C41895202 @default.
- W4313573631 hasConcept C95457728 @default.
- W4313573631 hasConceptScore W4313573631C107038049 @default.
- W4313573631 hasConceptScore W4313573631C126706616 @default.
- W4313573631 hasConceptScore W4313573631C138885662 @default.
- W4313573631 hasConceptScore W4313573631C142362112 @default.
- W4313573631 hasConceptScore W4313573631C144024400 @default.
- W4313573631 hasConceptScore W4313573631C154945302 @default.
- W4313573631 hasConceptScore W4313573631C166957645 @default.
- W4313573631 hasConceptScore W4313573631C19165224 @default.
- W4313573631 hasConceptScore W4313573631C204321447 @default.
- W4313573631 hasConceptScore W4313573631C2776215170 @default.
- W4313573631 hasConceptScore W4313573631C2778121359 @default.
- W4313573631 hasConceptScore W4313573631C2779343474 @default.
- W4313573631 hasConceptScore W4313573631C2779901982 @default.
- W4313573631 hasConceptScore W4313573631C2781291010 @default.
- W4313573631 hasConceptScore W4313573631C29595303 @default.
- W4313573631 hasConceptScore W4313573631C41008148 @default.
- W4313573631 hasConceptScore W4313573631C41895202 @default.
- W4313573631 hasConceptScore W4313573631C95457728 @default.
- W4313573631 hasIssue "2" @default.
- W4313573631 hasLocation W43135736311 @default.
- W4313573631 hasOpenAccess W4313573631 @default.
- W4313573631 hasPrimaryLocation W43135736311 @default.
- W4313573631 hasRelatedWork W1839466965 @default.
- W4313573631 hasRelatedWork W2139884799 @default.
- W4313573631 hasRelatedWork W2510591540 @default.
- W4313573631 hasRelatedWork W2599648454 @default.
- W4313573631 hasRelatedWork W2777950051 @default.
- W4313573631 hasRelatedWork W3124682324 @default.
- W4313573631 hasRelatedWork W3191285603 @default.
- W4313573631 hasRelatedWork W4253866295 @default.
- W4313573631 hasRelatedWork W2186094699 @default.
- W4313573631 hasRelatedWork W3162741027 @default.
- W4313573631 hasVolume "9" @default.
- W4313573631 isParatext "false" @default.
- W4313573631 isRetracted "false" @default.
- W4313573631 workType "article" @default.