Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313576232> ?p ?o ?g. }
- W4313576232 abstract "Abstract Background Success in any genomic prediction platform is directly dependent on establishing a representative training set. This is a complex task, even in single-trait single-environment conditions and tends to be even more intricated wherein additional information from envirotyping and correlated traits are considered. Here, we aimed to design optimized training sets focused on genomic prediction, considering multi-trait multi-environment trials, and how those methods may increase accuracy reducing phenotyping costs. For that, we considered single-trait multi-environment trials and multi-trait multi-environment trials for three traits: grain yield, plant height, and ear height, two datasets, and two cross-validation schemes. Next, two strategies for designing optimized training sets were conceived, first considering only the genomic by environment by trait interaction (GET), while a second including large-scale environmental data (W, enviromics) as genomic by enviromic by trait interaction (GWT). The effective number of individuals (genotypes × environments × traits) was assumed as those that represent at least 98% of each kernel (GET or GWT) variation, in which those individuals were then selected by a genetic algorithm based on prediction error variance criteria to compose an optimized training set for genomic prediction purposes. Results The combined use of genomic and enviromic data efficiently designs optimized training sets for genomic prediction, improving the response to selection per dollar invested by up to 145% when compared to the model without enviromic data, and even more when compared to cross validation scheme with 70% of training set or pure phenotypic selection. Prediction models that include G × E or enviromic data + G × E yielded better prediction ability. Conclusions Our findings indicate that a genomic by enviromic by trait interaction kernel associated with genetic algorithms is efficient and can be proposed as a promising approach to designing optimized training sets for genomic prediction when the variance-covariance matrix of traits is available. Additionally, great improvements in the genetic gains per dollar invested were observed, suggesting that a good allocation of resources can be deployed by using the proposed approach." @default.
- W4313576232 created "2023-01-06" @default.
- W4313576232 creator A5000576987 @default.
- W4313576232 creator A5006576169 @default.
- W4313576232 creator A5010336708 @default.
- W4313576232 creator A5013298400 @default.
- W4313576232 creator A5045062917 @default.
- W4313576232 creator A5049389291 @default.
- W4313576232 date "2023-01-05" @default.
- W4313576232 modified "2023-10-18" @default.
- W4313576232 title "Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize" @default.
- W4313576232 cites W1756006159 @default.
- W4313576232 cites W1928998639 @default.
- W4313576232 cites W1970149620 @default.
- W4313576232 cites W1970968485 @default.
- W4313576232 cites W1974759912 @default.
- W4313576232 cites W1979841890 @default.
- W4313576232 cites W1995125171 @default.
- W4313576232 cites W2030126026 @default.
- W4313576232 cites W2030590757 @default.
- W4313576232 cites W2067715889 @default.
- W4313576232 cites W2102273814 @default.
- W4313576232 cites W2130244527 @default.
- W4313576232 cites W2132501280 @default.
- W4313576232 cites W2141693972 @default.
- W4313576232 cites W2144504271 @default.
- W4313576232 cites W2151391832 @default.
- W4313576232 cites W2153707555 @default.
- W4313576232 cites W2162878627 @default.
- W4313576232 cites W2168952261 @default.
- W4313576232 cites W2173001608 @default.
- W4313576232 cites W2341634274 @default.
- W4313576232 cites W2598987170 @default.
- W4313576232 cites W2607207785 @default.
- W4313576232 cites W2608691562 @default.
- W4313576232 cites W2624092183 @default.
- W4313576232 cites W2760544538 @default.
- W4313576232 cites W2788143107 @default.
- W4313576232 cites W2792329433 @default.
- W4313576232 cites W2802145818 @default.
- W4313576232 cites W2810850309 @default.
- W4313576232 cites W2890804331 @default.
- W4313576232 cites W2905096938 @default.
- W4313576232 cites W2905577432 @default.
- W4313576232 cites W2912353237 @default.
- W4313576232 cites W2913816108 @default.
- W4313576232 cites W2953869399 @default.
- W4313576232 cites W2983803089 @default.
- W4313576232 cites W3024112412 @default.
- W4313576232 cites W3024594274 @default.
- W4313576232 cites W3033745232 @default.
- W4313576232 cites W3034733652 @default.
- W4313576232 cites W3036452724 @default.
- W4313576232 cites W3043398104 @default.
- W4313576232 cites W3043908128 @default.
- W4313576232 cites W3080096554 @default.
- W4313576232 cites W3082534489 @default.
- W4313576232 cites W3112688983 @default.
- W4313576232 cites W3128559770 @default.
- W4313576232 cites W3133644862 @default.
- W4313576232 cites W3137245105 @default.
- W4313576232 cites W3154319762 @default.
- W4313576232 cites W3200269494 @default.
- W4313576232 cites W3203638724 @default.
- W4313576232 doi "https://doi.org/10.1186/s12870-022-03975-1" @default.
- W4313576232 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36604618" @default.
- W4313576232 hasPublicationYear "2023" @default.
- W4313576232 type Work @default.
- W4313576232 citedByCount "0" @default.
- W4313576232 crossrefType "journal-article" @default.
- W4313576232 hasAuthorship W4313576232A5000576987 @default.
- W4313576232 hasAuthorship W4313576232A5006576169 @default.
- W4313576232 hasAuthorship W4313576232A5010336708 @default.
- W4313576232 hasAuthorship W4313576232A5013298400 @default.
- W4313576232 hasAuthorship W4313576232A5045062917 @default.
- W4313576232 hasAuthorship W4313576232A5049389291 @default.
- W4313576232 hasBestOaLocation W43135762321 @default.
- W4313576232 hasConcept C104317684 @default.
- W4313576232 hasConcept C106934330 @default.
- W4313576232 hasConcept C119857082 @default.
- W4313576232 hasConcept C121955636 @default.
- W4313576232 hasConcept C124101348 @default.
- W4313576232 hasConcept C135763542 @default.
- W4313576232 hasConcept C144133560 @default.
- W4313576232 hasConcept C153209595 @default.
- W4313576232 hasConcept C154945302 @default.
- W4313576232 hasConcept C177264268 @default.
- W4313576232 hasConcept C196083921 @default.
- W4313576232 hasConcept C199360897 @default.
- W4313576232 hasConcept C2992444039 @default.
- W4313576232 hasConcept C41008148 @default.
- W4313576232 hasConcept C54355233 @default.
- W4313576232 hasConcept C81917197 @default.
- W4313576232 hasConcept C86803240 @default.
- W4313576232 hasConceptScore W4313576232C104317684 @default.
- W4313576232 hasConceptScore W4313576232C106934330 @default.
- W4313576232 hasConceptScore W4313576232C119857082 @default.
- W4313576232 hasConceptScore W4313576232C121955636 @default.
- W4313576232 hasConceptScore W4313576232C124101348 @default.
- W4313576232 hasConceptScore W4313576232C135763542 @default.