Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313577060> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4313577060 endingPage "2203" @default.
- W4313577060 startingPage "2193" @default.
- W4313577060 abstract "Graph representation learning, which maps high-dimensional graphs or sparse graphs into a low-dimensional vector space, has shown its superiority in numerous learning tasks. Recently, researchers have identified some advantages of context-sensitive graph representation learning methods in functions such as link predictions and ranking recommendations. However, most existing methods depend on convolutional neural networks or recursive neural networks to obtain additional information outside a node, or require community algorithms to extract multiple contexts of a node, or focus only on the local neighboring nodes without their structural information. In this paper, we propose a novel context-sensitive representation method, Context-Sensitive Graph Representation Learning (CSGRL), which simultaneously combines attention networks and a variant of graph auto-encoder to learn weighty information about various aspects of participating neighboring nodes. The core of CSGRL is to utilize an asymmetric graph encoder to aggregate information about neighboring nodes and local structures to optimize the learning goal. The main benefit of CSGRL is that it does not need additional features and multiple contexts for the node. The message of neighboring nodes and their structures spread through the encoder. Experiments are conducted on three real datasets for both tasks of link prediction and node clustering, and the results demonstrate that CSGRL can significantly improve the effectiveness of all challenging learning tasks compared with 14 state-of-the-art baselines." @default.
- W4313577060 created "2023-01-06" @default.
- W4313577060 creator A5008783473 @default.
- W4313577060 creator A5032786165 @default.
- W4313577060 creator A5072246520 @default.
- W4313577060 creator A5080320714 @default.
- W4313577060 date "2023-01-05" @default.
- W4313577060 modified "2023-09-25" @default.
- W4313577060 title "Context-sensitive graph representation learning" @default.
- W4313577060 cites W2010187764 @default.
- W4313577060 cites W2108614537 @default.
- W4313577060 cites W2393319904 @default.
- W4313577060 cites W2740934577 @default.
- W4313577060 cites W2768859421 @default.
- W4313577060 cites W2781318495 @default.
- W4313577060 cites W2801306368 @default.
- W4313577060 cites W2808409763 @default.
- W4313577060 cites W2883725317 @default.
- W4313577060 cites W2943373497 @default.
- W4313577060 cites W2962756421 @default.
- W4313577060 cites W2997965128 @default.
- W4313577060 cites W3037487820 @default.
- W4313577060 cites W3081306295 @default.
- W4313577060 cites W3104097132 @default.
- W4313577060 cites W3105705953 @default.
- W4313577060 cites W3118668402 @default.
- W4313577060 cites W4232932184 @default.
- W4313577060 doi "https://doi.org/10.1007/s13042-022-01755-9" @default.
- W4313577060 hasPublicationYear "2023" @default.
- W4313577060 type Work @default.
- W4313577060 citedByCount "1" @default.
- W4313577060 countsByYear W43135770602023 @default.
- W4313577060 crossrefType "journal-article" @default.
- W4313577060 hasAuthorship W4313577060A5008783473 @default.
- W4313577060 hasAuthorship W4313577060A5032786165 @default.
- W4313577060 hasAuthorship W4313577060A5072246520 @default.
- W4313577060 hasAuthorship W4313577060A5080320714 @default.
- W4313577060 hasBestOaLocation W43135770602 @default.
- W4313577060 hasConcept C101738243 @default.
- W4313577060 hasConcept C108583219 @default.
- W4313577060 hasConcept C111919701 @default.
- W4313577060 hasConcept C118505674 @default.
- W4313577060 hasConcept C119857082 @default.
- W4313577060 hasConcept C127413603 @default.
- W4313577060 hasConcept C132525143 @default.
- W4313577060 hasConcept C154945302 @default.
- W4313577060 hasConcept C41008148 @default.
- W4313577060 hasConcept C59404180 @default.
- W4313577060 hasConcept C62611344 @default.
- W4313577060 hasConcept C66938386 @default.
- W4313577060 hasConcept C73555534 @default.
- W4313577060 hasConcept C80444323 @default.
- W4313577060 hasConceptScore W4313577060C101738243 @default.
- W4313577060 hasConceptScore W4313577060C108583219 @default.
- W4313577060 hasConceptScore W4313577060C111919701 @default.
- W4313577060 hasConceptScore W4313577060C118505674 @default.
- W4313577060 hasConceptScore W4313577060C119857082 @default.
- W4313577060 hasConceptScore W4313577060C127413603 @default.
- W4313577060 hasConceptScore W4313577060C132525143 @default.
- W4313577060 hasConceptScore W4313577060C154945302 @default.
- W4313577060 hasConceptScore W4313577060C41008148 @default.
- W4313577060 hasConceptScore W4313577060C59404180 @default.
- W4313577060 hasConceptScore W4313577060C62611344 @default.
- W4313577060 hasConceptScore W4313577060C66938386 @default.
- W4313577060 hasConceptScore W4313577060C73555534 @default.
- W4313577060 hasConceptScore W4313577060C80444323 @default.
- W4313577060 hasIssue "6" @default.
- W4313577060 hasLocation W43135770601 @default.
- W4313577060 hasLocation W43135770602 @default.
- W4313577060 hasOpenAccess W4313577060 @default.
- W4313577060 hasPrimaryLocation W43135770601 @default.
- W4313577060 hasRelatedWork W2530216401 @default.
- W4313577060 hasRelatedWork W2554952599 @default.
- W4313577060 hasRelatedWork W2669956259 @default.
- W4313577060 hasRelatedWork W2784313445 @default.
- W4313577060 hasRelatedWork W2939353110 @default.
- W4313577060 hasRelatedWork W3028119202 @default.
- W4313577060 hasRelatedWork W3165463024 @default.
- W4313577060 hasRelatedWork W4287178339 @default.
- W4313577060 hasRelatedWork W4301416110 @default.
- W4313577060 hasRelatedWork W4322614756 @default.
- W4313577060 hasVolume "14" @default.
- W4313577060 isParatext "false" @default.
- W4313577060 isRetracted "false" @default.
- W4313577060 workType "article" @default.