Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313578022> ?p ?o ?g. }
- W4313578022 endingPage "106847" @default.
- W4313578022 startingPage "106847" @default.
- W4313578022 abstract "Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems." @default.
- W4313578022 created "2023-01-06" @default.
- W4313578022 creator A5000537533 @default.
- W4313578022 creator A5079520161 @default.
- W4313578022 date "2023-03-01" @default.
- W4313578022 modified "2023-10-18" @default.
- W4313578022 title "Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review" @default.
- W4313578022 cites W1901616594 @default.
- W4313578022 cites W2002645541 @default.
- W4313578022 cites W2016017859 @default.
- W4313578022 cites W2040152771 @default.
- W4313578022 cites W2050717874 @default.
- W4313578022 cites W2053491738 @default.
- W4313578022 cites W2086112923 @default.
- W4313578022 cites W2098240320 @default.
- W4313578022 cites W2125855465 @default.
- W4313578022 cites W2151554678 @default.
- W4313578022 cites W2158824710 @default.
- W4313578022 cites W2190217104 @default.
- W4313578022 cites W2216536395 @default.
- W4313578022 cites W2279156723 @default.
- W4313578022 cites W2443198213 @default.
- W4313578022 cites W2467780231 @default.
- W4313578022 cites W2593391118 @default.
- W4313578022 cites W2600039576 @default.
- W4313578022 cites W2600845942 @default.
- W4313578022 cites W2607056031 @default.
- W4313578022 cites W2607452947 @default.
- W4313578022 cites W2611148533 @default.
- W4313578022 cites W2763975862 @default.
- W4313578022 cites W2771606018 @default.
- W4313578022 cites W2771664976 @default.
- W4313578022 cites W2778342521 @default.
- W4313578022 cites W2789758093 @default.
- W4313578022 cites W2884443195 @default.
- W4313578022 cites W2885770726 @default.
- W4313578022 cites W2887312959 @default.
- W4313578022 cites W2889474878 @default.
- W4313578022 cites W2892729613 @default.
- W4313578022 cites W2897702508 @default.
- W4313578022 cites W2900936310 @default.
- W4313578022 cites W2903413526 @default.
- W4313578022 cites W2905197144 @default.
- W4313578022 cites W2906884680 @default.
- W4313578022 cites W2909249197 @default.
- W4313578022 cites W2912058935 @default.
- W4313578022 cites W2912517803 @default.
- W4313578022 cites W2920982304 @default.
- W4313578022 cites W2922393020 @default.
- W4313578022 cites W2942491183 @default.
- W4313578022 cites W2943900589 @default.
- W4313578022 cites W2945976633 @default.
- W4313578022 cites W2946512733 @default.
- W4313578022 cites W2947996487 @default.
- W4313578022 cites W2949006411 @default.
- W4313578022 cites W2952890616 @default.
- W4313578022 cites W2963240573 @default.
- W4313578022 cites W2969724287 @default.
- W4313578022 cites W2971404471 @default.
- W4313578022 cites W2973370146 @default.
- W4313578022 cites W2979175780 @default.
- W4313578022 cites W2979711536 @default.
- W4313578022 cites W2980326698 @default.
- W4313578022 cites W2984362289 @default.
- W4313578022 cites W2984589550 @default.
- W4313578022 cites W2990367159 @default.
- W4313578022 cites W2991033185 @default.
- W4313578022 cites W2995916173 @default.
- W4313578022 cites W3003447185 @default.
- W4313578022 cites W3006846656 @default.
- W4313578022 cites W3007609684 @default.
- W4313578022 cites W3010437674 @default.
- W4313578022 cites W3016301891 @default.
- W4313578022 cites W3023669649 @default.
- W4313578022 cites W3024525656 @default.
- W4313578022 cites W3028476056 @default.
- W4313578022 cites W3030905558 @default.
- W4313578022 cites W3043270278 @default.
- W4313578022 cites W3043435488 @default.
- W4313578022 cites W3047111120 @default.
- W4313578022 cites W3047447133 @default.
- W4313578022 cites W3048891512 @default.
- W4313578022 cites W3049235151 @default.
- W4313578022 cites W3081529317 @default.
- W4313578022 cites W3093274391 @default.
- W4313578022 cites W3093832188 @default.
- W4313578022 cites W3096689326 @default.
- W4313578022 cites W3118670782 @default.
- W4313578022 cites W3126836101 @default.
- W4313578022 cites W3131273504 @default.
- W4313578022 cites W3131577019 @default.
- W4313578022 cites W3131948666 @default.
- W4313578022 cites W3133885865 @default.
- W4313578022 cites W3135115577 @default.
- W4313578022 cites W3137668973 @default.
- W4313578022 cites W3149594377 @default.
- W4313578022 cites W3153567671 @default.
- W4313578022 cites W3163993681 @default.