Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313579752> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313579752 endingPage "490" @default.
- W4313579752 startingPage "484" @default.
- W4313579752 abstract "The effectiveness of the implementation of the Concept of predictive, preventive and personalized medicine is directly related to the development and scaling of the process of digitalization of healthcare with the leading position occupied by artificial intelligence technologies (AI technologies). This fully applies to the problem of predictive analysis of risk factors for premature death from socially significant non-communicable diseases (NCDs). The purpose of the work was to summarize the current domestic and foreign experience of using AI technologies and machine learning (ML) in predictive analysis of risk factors for premature death from socially significant non-communicable diseases. The search for publications was carried out in the RSCI, CyberLeninka, eLibrary, and PubMed databases containing domestic and foreign sources of scientific information. The search depth covered period from 2011 to 2021. More than 50 sources of scientific information were analyzed. The article briefly reports on the global risk factors (RF) of premature death due to NCDs, the main place among which is occupied by diseases of the circulatory system. The disadvantages of calculators used in mass examinations to determine the total risk of fatal cardiovascular events (CVE) are considered ¾ Framingham scale and SCORE scale. It is shown that the individual predictive efficiency of calculators can be increased due to ML technologies that use big data on the health status of the population in certain regions, digitalization of medical images, and expansion of structured databases of the RF spectrum, which makes it possible to recognize and take into account complex relationships between multiple, correlated, and nonlinear RF and CVE outcomes. Examples of the predictive effectiveness of ML models are given. Special attention is paid to AI technologies and deep ML in the stratification of CVE risk and outcomes based on the analysis of imagesof the fundus the eye. Conclusion. The introduction of AI technologies and ML in clinical practice opens up the prospect of achieving an effective individualized stratification of the risk of premature death due to chronic NCDs and their factor of personalized prevention through timely optimization of socially significant diseases modifiable by the F." @default.
- W4313579752 created "2023-01-06" @default.
- W4313579752 creator A5002284176 @default.
- W4313579752 creator A5029825011 @default.
- W4313579752 date "2022-12-12" @default.
- W4313579752 modified "2023-10-18" @default.
- W4313579752 title "The use of modern digital technologies in predictive analysis of risk factors for premature death due to socially significant non-communicable diseases (literature review)" @default.
- W4313579752 cites W1513682612 @default.
- W4313579752 cites W1998669374 @default.
- W4313579752 cites W2033609349 @default.
- W4313579752 cites W2041281529 @default.
- W4313579752 cites W2127776292 @default.
- W4313579752 cites W2526666881 @default.
- W4313579752 cites W2588266204 @default.
- W4313579752 cites W2731890419 @default.
- W4313579752 cites W2752747624 @default.
- W4313579752 cites W2765318374 @default.
- W4313579752 cites W2888256795 @default.
- W4313579752 cites W2899921784 @default.
- W4313579752 cites W2945881520 @default.
- W4313579752 cites W2950720305 @default.
- W4313579752 cites W2971909103 @default.
- W4313579752 cites W3008847490 @default.
- W4313579752 cites W3011416893 @default.
- W4313579752 cites W3017248905 @default.
- W4313579752 cites W3028522870 @default.
- W4313579752 cites W3048112388 @default.
- W4313579752 cites W3084346878 @default.
- W4313579752 cites W3090507198 @default.
- W4313579752 cites W3091908957 @default.
- W4313579752 cites W3092861045 @default.
- W4313579752 cites W3118658359 @default.
- W4313579752 cites W3136040801 @default.
- W4313579752 cites W3138796691 @default.
- W4313579752 cites W4253522414 @default.
- W4313579752 doi "https://doi.org/10.47470/0044-197x-2022-66-6-484-490" @default.
- W4313579752 hasPublicationYear "2022" @default.
- W4313579752 type Work @default.
- W4313579752 citedByCount "1" @default.
- W4313579752 countsByYear W43135797522023 @default.
- W4313579752 crossrefType "journal-article" @default.
- W4313579752 hasAuthorship W4313579752A5002284176 @default.
- W4313579752 hasAuthorship W4313579752A5029825011 @default.
- W4313579752 hasBestOaLocation W43135797521 @default.
- W4313579752 hasConcept C111815664 @default.
- W4313579752 hasConcept C112930515 @default.
- W4313579752 hasConcept C11783203 @default.
- W4313579752 hasConcept C142724271 @default.
- W4313579752 hasConcept C177713679 @default.
- W4313579752 hasConcept C205649164 @default.
- W4313579752 hasConcept C2522767166 @default.
- W4313579752 hasConcept C2778755073 @default.
- W4313579752 hasConcept C2779134260 @default.
- W4313579752 hasConcept C2908647359 @default.
- W4313579752 hasConcept C41008148 @default.
- W4313579752 hasConcept C58640448 @default.
- W4313579752 hasConcept C71924100 @default.
- W4313579752 hasConcept C99454951 @default.
- W4313579752 hasConceptScore W4313579752C111815664 @default.
- W4313579752 hasConceptScore W4313579752C112930515 @default.
- W4313579752 hasConceptScore W4313579752C11783203 @default.
- W4313579752 hasConceptScore W4313579752C142724271 @default.
- W4313579752 hasConceptScore W4313579752C177713679 @default.
- W4313579752 hasConceptScore W4313579752C205649164 @default.
- W4313579752 hasConceptScore W4313579752C2522767166 @default.
- W4313579752 hasConceptScore W4313579752C2778755073 @default.
- W4313579752 hasConceptScore W4313579752C2779134260 @default.
- W4313579752 hasConceptScore W4313579752C2908647359 @default.
- W4313579752 hasConceptScore W4313579752C41008148 @default.
- W4313579752 hasConceptScore W4313579752C58640448 @default.
- W4313579752 hasConceptScore W4313579752C71924100 @default.
- W4313579752 hasConceptScore W4313579752C99454951 @default.
- W4313579752 hasIssue "6" @default.
- W4313579752 hasLocation W43135797521 @default.
- W4313579752 hasOpenAccess W4313579752 @default.
- W4313579752 hasPrimaryLocation W43135797521 @default.
- W4313579752 hasRelatedWork W1851016917 @default.
- W4313579752 hasRelatedWork W1982388898 @default.
- W4313579752 hasRelatedWork W2000066325 @default.
- W4313579752 hasRelatedWork W2000923438 @default.
- W4313579752 hasRelatedWork W2044673406 @default.
- W4313579752 hasRelatedWork W2126260349 @default.
- W4313579752 hasRelatedWork W2184315123 @default.
- W4313579752 hasRelatedWork W2408895471 @default.
- W4313579752 hasRelatedWork W2748952813 @default.
- W4313579752 hasRelatedWork W2899084033 @default.
- W4313579752 hasVolume "66" @default.
- W4313579752 isParatext "false" @default.
- W4313579752 isRetracted "false" @default.
- W4313579752 workType "article" @default.