Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313581354> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4313581354 endingPage "523" @default.
- W4313581354 startingPage "523" @default.
- W4313581354 abstract "Self-collision detection is fundamental to the safe operation of multi-manipulator systems, especially when cooperating in highly dynamic working environments. Existing methods still face the problem that detection efficiency and accuracy cannot be achieved at the same time. In this paper, we introduce artificial intelligence technology into the control system. Based on the Gilbert-Johnson-Keerthi (GJK) algorithm, we generated a dataset and trained a deep neural network (DLNet) to improve the detection efficiency. By combining DLNet and the GJK algorithm, we propose a two-level self-collision detection algorithm (DLGJK algorithm) to solve real-time self-collision detection problems in a dual-manipulator system with fast-continuous and high-precision properties. First, the proposed algorithm uses DLNet to determine whether the current working state of the system has a risk of self-collision; since most of the working states in a system workspace do not have a self-collision risk, DLNet can effectively reduce the number of unnecessary detections and improve the detection efficiency. Then, for the working states with a risk of self-collision, we modeled precise colliders and applied the GJK algorithm for fine self-collision detection, which achieved detection accuracy. The experimental results showed that compared to that with the global use of the GJK algorithm for self-collision detection, the DLGJK algorithm can reduce the time expectation of a single detection in a system workspace by 97.7%. In the path planning of the manipulators, it could effectively reduce the number of unnecessary detections, improve the detection efficiency, and reduce system overhead. The proposed algorithm also has good scalability for a multi-manipulator system that can be split into dual-manipulator systems." @default.
- W4313581354 created "2023-01-06" @default.
- W4313581354 creator A5000136376 @default.
- W4313581354 creator A5010302463 @default.
- W4313581354 creator A5056796255 @default.
- W4313581354 creator A5070296161 @default.
- W4313581354 date "2023-01-03" @default.
- W4313581354 modified "2023-10-14" @default.
- W4313581354 title "A Self-Collision Detection Algorithm of a Dual-Manipulator System Based on GJK and Deep Learning" @default.
- W4313581354 cites W1999250663 @default.
- W4313581354 cites W2082651841 @default.
- W4313581354 cites W2142224528 @default.
- W4313581354 cites W2166316739 @default.
- W4313581354 cites W2332300331 @default.
- W4313581354 cites W2399136746 @default.
- W4313581354 cites W2732493815 @default.
- W4313581354 cites W2762248135 @default.
- W4313581354 cites W2768174095 @default.
- W4313581354 cites W2792984727 @default.
- W4313581354 cites W2796152842 @default.
- W4313581354 cites W2807402986 @default.
- W4313581354 cites W2906864453 @default.
- W4313581354 cites W2910081881 @default.
- W4313581354 cites W2918843756 @default.
- W4313581354 cites W2944195680 @default.
- W4313581354 cites W2953628575 @default.
- W4313581354 cites W2954761708 @default.
- W4313581354 cites W2999969016 @default.
- W4313581354 cites W3036225890 @default.
- W4313581354 cites W3093104061 @default.
- W4313581354 cites W3094493488 @default.
- W4313581354 cites W3114977466 @default.
- W4313581354 cites W3181223963 @default.
- W4313581354 cites W3192038574 @default.
- W4313581354 cites W3213466280 @default.
- W4313581354 cites W3213935432 @default.
- W4313581354 cites W4214749598 @default.
- W4313581354 cites W4220819944 @default.
- W4313581354 cites W4285207873 @default.
- W4313581354 cites W4290755984 @default.
- W4313581354 cites W4297988740 @default.
- W4313581354 cites W4304607265 @default.
- W4313581354 doi "https://doi.org/10.3390/s23010523" @default.
- W4313581354 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36617121" @default.
- W4313581354 hasPublicationYear "2023" @default.
- W4313581354 type Work @default.
- W4313581354 citedByCount "2" @default.
- W4313581354 countsByYear W43135813542023 @default.
- W4313581354 crossrefType "journal-article" @default.
- W4313581354 hasAuthorship W4313581354A5000136376 @default.
- W4313581354 hasAuthorship W4313581354A5010302463 @default.
- W4313581354 hasAuthorship W4313581354A5056796255 @default.
- W4313581354 hasAuthorship W4313581354A5070296161 @default.
- W4313581354 hasBestOaLocation W43135813541 @default.
- W4313581354 hasConcept C11413529 @default.
- W4313581354 hasConcept C121704057 @default.
- W4313581354 hasConcept C124952713 @default.
- W4313581354 hasConcept C142362112 @default.
- W4313581354 hasConcept C154945302 @default.
- W4313581354 hasConcept C199668693 @default.
- W4313581354 hasConcept C2780980858 @default.
- W4313581354 hasConcept C38652104 @default.
- W4313581354 hasConcept C41008148 @default.
- W4313581354 hasConcept C58581272 @default.
- W4313581354 hasConcept C79403827 @default.
- W4313581354 hasConcept C90509273 @default.
- W4313581354 hasConceptScore W4313581354C11413529 @default.
- W4313581354 hasConceptScore W4313581354C121704057 @default.
- W4313581354 hasConceptScore W4313581354C124952713 @default.
- W4313581354 hasConceptScore W4313581354C142362112 @default.
- W4313581354 hasConceptScore W4313581354C154945302 @default.
- W4313581354 hasConceptScore W4313581354C199668693 @default.
- W4313581354 hasConceptScore W4313581354C2780980858 @default.
- W4313581354 hasConceptScore W4313581354C38652104 @default.
- W4313581354 hasConceptScore W4313581354C41008148 @default.
- W4313581354 hasConceptScore W4313581354C58581272 @default.
- W4313581354 hasConceptScore W4313581354C79403827 @default.
- W4313581354 hasConceptScore W4313581354C90509273 @default.
- W4313581354 hasIssue "1" @default.
- W4313581354 hasLocation W43135813541 @default.
- W4313581354 hasLocation W43135813542 @default.
- W4313581354 hasLocation W43135813543 @default.
- W4313581354 hasOpenAccess W4313581354 @default.
- W4313581354 hasPrimaryLocation W43135813541 @default.
- W4313581354 hasRelatedWork W1450572252 @default.
- W4313581354 hasRelatedWork W1968105602 @default.
- W4313581354 hasRelatedWork W2063723151 @default.
- W4313581354 hasRelatedWork W2109046528 @default.
- W4313581354 hasRelatedWork W2116139108 @default.
- W4313581354 hasRelatedWork W2221590109 @default.
- W4313581354 hasRelatedWork W2360449866 @default.
- W4313581354 hasRelatedWork W2383278621 @default.
- W4313581354 hasRelatedWork W2537067512 @default.
- W4313581354 hasRelatedWork W2944181261 @default.
- W4313581354 hasVolume "23" @default.
- W4313581354 isParatext "false" @default.
- W4313581354 isRetracted "false" @default.
- W4313581354 workType "article" @default.