Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313584401> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313584401 abstract "Crop type mapping is an indispensable topic in the agricultural field and plays an important role in agricultural intelligence. In crop type mapping, most studies focus on time series models. However, in our experimental area, the images of the crop harvest stage can be obtained from single temporal remote sensing images. Only using single temporal data for crop type mapping can reduce the difficulty of dataset production. In addition, the model of single temporal crop type mapping can also extract the spatial features of crops more effectively. In this work, we linked crop type mapping with 2D semantic segmentation and designed CACPU-Net based on single-source and single-temporal autumn Sentinel-2 satellite images. First, we used a shallow convolutional neural network, U-Net, and introduced channel attention mechanism to improve the model’s ability to extract spectral features. Second, we presented the Dice to compute loss together with cross-entropy to mitigate the effects of crop class imbalance. In addition, we designed the CP module to additionally focus on hard-to-classify pixels. Our experiment was conducted on BeiDaHuang YouYi of Heilongjiang Province, which mainly grows rice, corn, soybean, and other economic crops. On the dataset we collected, through the 10-fold cross-validation experiment under the 8:1:1 dataset splitting scheme, our method achieved 93.74% overall accuracy, higher than state-of-the-art models. Compared with the previous model, our improved model has higher classification accuracy on the parcel boundary. This study provides an effective end-to-end method and a new research idea for crop type mapping. The code and the trained model are available on https://github.com/mooneed/CACPU-Net ." @default.
- W4313584401 created "2023-01-06" @default.
- W4313584401 creator A5034085664 @default.
- W4313584401 creator A5068539781 @default.
- W4313584401 creator A5083033930 @default.
- W4313584401 date "2023-01-04" @default.
- W4313584401 modified "2023-10-14" @default.
- W4313584401 title "CACPU-Net: Channel attention U-net constrained by point features for crop type mapping" @default.
- W4313584401 cites W1901129140 @default.
- W4313584401 cites W1998281138 @default.
- W4313584401 cites W2037227137 @default.
- W4313584401 cites W2395611524 @default.
- W4313584401 cites W2592712793 @default.
- W4313584401 cites W2791592925 @default.
- W4313584401 cites W2903282641 @default.
- W4313584401 cites W2955639914 @default.
- W4313584401 cites W2963420686 @default.
- W4313584401 cites W2963881378 @default.
- W4313584401 cites W3004127313 @default.
- W4313584401 cites W3014641072 @default.
- W4313584401 cites W3104839310 @default.
- W4313584401 cites W3112701542 @default.
- W4313584401 cites W3136424010 @default.
- W4313584401 cites W3158568413 @default.
- W4313584401 cites W3160412534 @default.
- W4313584401 cites W3198147788 @default.
- W4313584401 cites W4210705382 @default.
- W4313584401 cites W4220917101 @default.
- W4313584401 cites W4282974582 @default.
- W4313584401 cites W4312967336 @default.
- W4313584401 doi "https://doi.org/10.3389/fpls.2022.1030595" @default.
- W4313584401 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36684763" @default.
- W4313584401 hasPublicationYear "2023" @default.
- W4313584401 type Work @default.
- W4313584401 citedByCount "0" @default.
- W4313584401 crossrefType "journal-article" @default.
- W4313584401 hasAuthorship W4313584401A5034085664 @default.
- W4313584401 hasAuthorship W4313584401A5068539781 @default.
- W4313584401 hasAuthorship W4313584401A5083033930 @default.
- W4313584401 hasBestOaLocation W43135844011 @default.
- W4313584401 hasConcept C120665830 @default.
- W4313584401 hasConcept C121332964 @default.
- W4313584401 hasConcept C126343540 @default.
- W4313584401 hasConcept C137580998 @default.
- W4313584401 hasConcept C153180895 @default.
- W4313584401 hasConcept C154945302 @default.
- W4313584401 hasConcept C160633673 @default.
- W4313584401 hasConcept C192209626 @default.
- W4313584401 hasConcept C41008148 @default.
- W4313584401 hasConcept C6557445 @default.
- W4313584401 hasConcept C81363708 @default.
- W4313584401 hasConcept C86803240 @default.
- W4313584401 hasConcept C89600930 @default.
- W4313584401 hasConceptScore W4313584401C120665830 @default.
- W4313584401 hasConceptScore W4313584401C121332964 @default.
- W4313584401 hasConceptScore W4313584401C126343540 @default.
- W4313584401 hasConceptScore W4313584401C137580998 @default.
- W4313584401 hasConceptScore W4313584401C153180895 @default.
- W4313584401 hasConceptScore W4313584401C154945302 @default.
- W4313584401 hasConceptScore W4313584401C160633673 @default.
- W4313584401 hasConceptScore W4313584401C192209626 @default.
- W4313584401 hasConceptScore W4313584401C41008148 @default.
- W4313584401 hasConceptScore W4313584401C6557445 @default.
- W4313584401 hasConceptScore W4313584401C81363708 @default.
- W4313584401 hasConceptScore W4313584401C86803240 @default.
- W4313584401 hasConceptScore W4313584401C89600930 @default.
- W4313584401 hasLocation W43135844011 @default.
- W4313584401 hasLocation W43135844012 @default.
- W4313584401 hasLocation W43135844013 @default.
- W4313584401 hasOpenAccess W4313584401 @default.
- W4313584401 hasPrimaryLocation W43135844011 @default.
- W4313584401 hasRelatedWork W2136485282 @default.
- W4313584401 hasRelatedWork W2507402573 @default.
- W4313584401 hasRelatedWork W2521062615 @default.
- W4313584401 hasRelatedWork W2546871836 @default.
- W4313584401 hasRelatedWork W2767651786 @default.
- W4313584401 hasRelatedWork W2912288872 @default.
- W4313584401 hasRelatedWork W3016958897 @default.
- W4313584401 hasRelatedWork W3181746755 @default.
- W4313584401 hasRelatedWork W4200528772 @default.
- W4313584401 hasRelatedWork W4283379348 @default.
- W4313584401 hasVolume "13" @default.
- W4313584401 isParatext "false" @default.
- W4313584401 isRetracted "false" @default.
- W4313584401 workType "article" @default.