Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313584552> ?p ?o ?g. }
- W4313584552 abstract "Aim: The purpose of this study was to establish a mode of action for diosgenin against breast cancer employing a range of system biology tools and to corroborate its results with experimental facts. Methodology: The diosgenin-regulated domains implicated in breast cancer were enriched in the Kyoto Encyclopedia of Genes and Genomes database to establish diosgenin-protein(s)-pathway(s) associations. Later, molecular docking and the lead complexes were considered for molecular dynamics simulations, MMPBSA, principal component, and dynamics cross-correlation matrix analysis using GROMACS v2021. Furthermore, survival analysis was carried out for the diosgenin-regulated proteins that were anticipated to be involved in breast cancer. For gene expression analyses, the top three targets with the highest binding affinity for diosgenin and tumor expression were examined. Furthermore, the effect of diosgenin on cell proliferation, cytotoxicity, and the partial Warburg effect was tested to validate the computational findings using functional outputs of the lead targets. Results: The protein-protein interaction had 57 edges, an average node degree of 5.43, and a p-value of 3.83e-14. Furthermore, enrichment analysis showed 36 KEGG pathways, 12 cellular components, 27 molecular functions, and 307 biological processes. In network analysis, three hub proteins were notably modulated: IGF1R, MDM2, and SRC, diosgenin with the highest binding affinity with IGF1R (binding energy -8.6 kcal/mol). Furthermore, during the 150 ns molecular dynamics (MD) projection run, diosgenin exhibited robust intermolecular interactions and had the least free binding energy with IGF1R (-35.143 kcal/mol) compared to MDM2 (-34.619 kcal/mol), and SRC (-17.944 kcal/mol). Diosgenin exhibited the highest cytotoxicity against MCF7 cell lines (IC50 12.05 ± 1.33) µg/ml. Furthermore, in H2O2-induced oxidative stress, the inhibitory constant (IC50 7.68 ± 0.51) µg/ml of diosgenin was lowest in MCF7 cell lines. However, the reversal of the Warburg effect by diosgenin seemed to be maximum in non-cancer Vero cell lines (EC50 15.27 ± 0.95) µg/ml compared to the rest. Furthermore, diosgenin inhibited cell proliferation in SKBR3 cell lines more though. Conclusion: The current study demonstrated that diosgenin impacts a series of signaling pathways, involved in the advancement of breast cancer, including FoxO, PI3K-Akt, p53, Ras, and MAPK signaling. Additionally, diosgenin established a persistent diosgenin-protein complex and had a significant binding affinity towards IGF1R, MDM2, and SRC. It is possible that this slowed down cell growth, countered the Warburg phenomenon, and showed the cytotoxicity towards breast cancer cells." @default.
- W4313584552 created "2023-01-06" @default.
- W4313584552 creator A5002415475 @default.
- W4313584552 creator A5013166546 @default.
- W4313584552 creator A5021662701 @default.
- W4313584552 creator A5022727716 @default.
- W4313584552 creator A5030832265 @default.
- W4313584552 creator A5049482327 @default.
- W4313584552 creator A5057576750 @default.
- W4313584552 creator A5071077072 @default.
- W4313584552 creator A5071566383 @default.
- W4313584552 date "2023-01-04" @default.
- W4313584552 modified "2023-10-06" @default.
- W4313584552 title "Systems and in vitro pharmacology profiling of diosgenin against breast cancer" @default.
- W4313584552 cites W1523079887 @default.
- W4313584552 cites W153641409 @default.
- W4313584552 cites W1663251599 @default.
- W4313584552 cites W1761238376 @default.
- W4313584552 cites W1968963363 @default.
- W4313584552 cites W1971572370 @default.
- W4313584552 cites W1971861698 @default.
- W4313584552 cites W1978583563 @default.
- W4313584552 cites W1983605950 @default.
- W4313584552 cites W1991371485 @default.
- W4313584552 cites W2002813101 @default.
- W4313584552 cites W2004271648 @default.
- W4313584552 cites W2008680700 @default.
- W4313584552 cites W2015220984 @default.
- W4313584552 cites W2028691872 @default.
- W4313584552 cites W2036453394 @default.
- W4313584552 cites W2039038314 @default.
- W4313584552 cites W2042517813 @default.
- W4313584552 cites W2044172327 @default.
- W4313584552 cites W2050144032 @default.
- W4313584552 cites W2083932352 @default.
- W4313584552 cites W2088565003 @default.
- W4313584552 cites W2090631044 @default.
- W4313584552 cites W2091340779 @default.
- W4313584552 cites W2093010641 @default.
- W4313584552 cites W2093906084 @default.
- W4313584552 cites W2094081452 @default.
- W4313584552 cites W2096864392 @default.
- W4313584552 cites W2101995865 @default.
- W4313584552 cites W2106869339 @default.
- W4313584552 cites W2114103020 @default.
- W4313584552 cites W2114918609 @default.
- W4313584552 cites W2117893240 @default.
- W4313584552 cites W2119192654 @default.
- W4313584552 cites W2129853470 @default.
- W4313584552 cites W2132331505 @default.
- W4313584552 cites W2132589721 @default.
- W4313584552 cites W2132663758 @default.
- W4313584552 cites W2134967712 @default.
- W4313584552 cites W2135085018 @default.
- W4313584552 cites W2140315117 @default.
- W4313584552 cites W2151375675 @default.
- W4313584552 cites W2151408702 @default.
- W4313584552 cites W2155091686 @default.
- W4313584552 cites W2159097326 @default.
- W4313584552 cites W2159675211 @default.
- W4313584552 cites W2159696390 @default.
- W4313584552 cites W2171268876 @default.
- W4313584552 cites W2592760610 @default.
- W4313584552 cites W2593436234 @default.
- W4313584552 cites W2600379545 @default.
- W4313584552 cites W2607666115 @default.
- W4313584552 cites W2741309469 @default.
- W4313584552 cites W2775459412 @default.
- W4313584552 cites W2792922601 @default.
- W4313584552 cites W2904049988 @default.
- W4313584552 cites W2944883972 @default.
- W4313584552 cites W2945754617 @default.
- W4313584552 cites W2946412700 @default.
- W4313584552 cites W2963174528 @default.
- W4313584552 cites W3014352023 @default.
- W4313584552 cites W3023885322 @default.
- W4313584552 cites W3045740727 @default.
- W4313584552 cites W3106728827 @default.
- W4313584552 cites W3107527779 @default.
- W4313584552 cites W3116784230 @default.
- W4313584552 cites W3136769917 @default.
- W4313584552 cites W3154258817 @default.
- W4313584552 cites W3156059050 @default.
- W4313584552 cites W3160531467 @default.
- W4313584552 cites W3189415574 @default.
- W4313584552 cites W4200173571 @default.
- W4313584552 cites W4205892631 @default.
- W4313584552 cites W4206124143 @default.
- W4313584552 cites W4206898542 @default.
- W4313584552 cites W4281926870 @default.
- W4313584552 cites W4307122047 @default.
- W4313584552 cites W950232622 @default.
- W4313584552 doi "https://doi.org/10.3389/fphar.2022.1052849" @default.
- W4313584552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36686654" @default.
- W4313584552 hasPublicationYear "2023" @default.
- W4313584552 type Work @default.
- W4313584552 citedByCount "10" @default.
- W4313584552 countsByYear W43135845522023 @default.
- W4313584552 crossrefType "journal-article" @default.
- W4313584552 hasAuthorship W4313584552A5002415475 @default.