Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313584565> ?p ?o ?g. }
- W4313584565 endingPage "55" @default.
- W4313584565 startingPage "55" @default.
- W4313584565 abstract "Recently, artificial intelligence (AI) with deep learning (DL) and machine learning (ML) has been extensively used to automate labor-intensive and time-consuming work and to help in prognosis and diagnosis. AI’s role in biomedical and biological imaging is an emerging field of research and reveals future trends. Cervical cell (CCL) classification is crucial in screening cervical cancer (CC) at an earlier stage. Unlike the traditional classification method, which depends on hand-engineered or crafted features, convolution neural network (CNN) usually categorizes CCLs through learned features. Moreover, the latent correlation of images might be disregarded in CNN feature learning and thereby influence the representative capability of the CNN feature. This study develops an equilibrium optimizer with ensemble learning-based cervical precancerous lesion classification on colposcopy images (EOEL-PCLCCI) technique. The presented EOEL-PCLCCI technique mainly focuses on identifying and classifying cervical cancer on colposcopy images. In the presented EOEL-PCLCCI technique, the DenseNet-264 architecture is used for the feature extractor, and the EO algorithm is applied as a hyperparameter optimizer. An ensemble of weighted voting classifications, namely long short-term memory (LSTM) and gated recurrent unit (GRU), is used for the classification process. A widespread simulation analysis is performed on a benchmark dataset to depict the superior performance of the EOEL-PCLCCI approach, and the results demonstrated the betterment of the EOEL-PCLCCI algorithm over other DL models." @default.
- W4313584565 created "2023-01-06" @default.
- W4313584565 creator A5003500465 @default.
- W4313584565 creator A5074808438 @default.
- W4313584565 date "2022-12-25" @default.
- W4313584565 modified "2023-10-09" @default.
- W4313584565 title "Equilibrium Optimization Algorithm with Ensemble Learning Based Cervical Precancerous Lesion Classification Model" @default.
- W4313584565 cites W2897840891 @default.
- W4313584565 cites W2964269074 @default.
- W4313584565 cites W2969980243 @default.
- W4313584565 cites W2979748147 @default.
- W4313584565 cites W2999211502 @default.
- W4313584565 cites W3014001067 @default.
- W4313584565 cites W3024740627 @default.
- W4313584565 cites W3035378222 @default.
- W4313584565 cites W3044434476 @default.
- W4313584565 cites W3092819728 @default.
- W4313584565 cites W3093496925 @default.
- W4313584565 cites W3130039502 @default.
- W4313584565 cites W3169982119 @default.
- W4313584565 cites W3201046531 @default.
- W4313584565 cites W3216361822 @default.
- W4313584565 cites W4200420294 @default.
- W4313584565 cites W4214560057 @default.
- W4313584565 cites W4221086517 @default.
- W4313584565 cites W4225332073 @default.
- W4313584565 cites W4229460062 @default.
- W4313584565 cites W4281735077 @default.
- W4313584565 cites W4289544857 @default.
- W4313584565 cites W4295838521 @default.
- W4313584565 doi "https://doi.org/10.3390/healthcare11010055" @default.
- W4313584565 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36611515" @default.
- W4313584565 hasPublicationYear "2022" @default.
- W4313584565 type Work @default.
- W4313584565 citedByCount "3" @default.
- W4313584565 countsByYear W43135845652023 @default.
- W4313584565 crossrefType "journal-article" @default.
- W4313584565 hasAuthorship W4313584565A5003500465 @default.
- W4313584565 hasAuthorship W4313584565A5074808438 @default.
- W4313584565 hasBestOaLocation W43135845651 @default.
- W4313584565 hasConcept C108583219 @default.
- W4313584565 hasConcept C11413529 @default.
- W4313584565 hasConcept C119857082 @default.
- W4313584565 hasConcept C121608353 @default.
- W4313584565 hasConcept C126322002 @default.
- W4313584565 hasConcept C13280743 @default.
- W4313584565 hasConcept C138885662 @default.
- W4313584565 hasConcept C153180895 @default.
- W4313584565 hasConcept C154945302 @default.
- W4313584565 hasConcept C185798385 @default.
- W4313584565 hasConcept C205649164 @default.
- W4313584565 hasConcept C2776117191 @default.
- W4313584565 hasConcept C2776401178 @default.
- W4313584565 hasConcept C2778220009 @default.
- W4313584565 hasConcept C41008148 @default.
- W4313584565 hasConcept C41895202 @default.
- W4313584565 hasConcept C45942800 @default.
- W4313584565 hasConcept C71924100 @default.
- W4313584565 hasConcept C81363708 @default.
- W4313584565 hasConcept C8642999 @default.
- W4313584565 hasConceptScore W4313584565C108583219 @default.
- W4313584565 hasConceptScore W4313584565C11413529 @default.
- W4313584565 hasConceptScore W4313584565C119857082 @default.
- W4313584565 hasConceptScore W4313584565C121608353 @default.
- W4313584565 hasConceptScore W4313584565C126322002 @default.
- W4313584565 hasConceptScore W4313584565C13280743 @default.
- W4313584565 hasConceptScore W4313584565C138885662 @default.
- W4313584565 hasConceptScore W4313584565C153180895 @default.
- W4313584565 hasConceptScore W4313584565C154945302 @default.
- W4313584565 hasConceptScore W4313584565C185798385 @default.
- W4313584565 hasConceptScore W4313584565C205649164 @default.
- W4313584565 hasConceptScore W4313584565C2776117191 @default.
- W4313584565 hasConceptScore W4313584565C2776401178 @default.
- W4313584565 hasConceptScore W4313584565C2778220009 @default.
- W4313584565 hasConceptScore W4313584565C41008148 @default.
- W4313584565 hasConceptScore W4313584565C41895202 @default.
- W4313584565 hasConceptScore W4313584565C45942800 @default.
- W4313584565 hasConceptScore W4313584565C71924100 @default.
- W4313584565 hasConceptScore W4313584565C81363708 @default.
- W4313584565 hasConceptScore W4313584565C8642999 @default.
- W4313584565 hasIssue "1" @default.
- W4313584565 hasLocation W43135845651 @default.
- W4313584565 hasLocation W43135845652 @default.
- W4313584565 hasLocation W43135845653 @default.
- W4313584565 hasOpenAccess W4313584565 @default.
- W4313584565 hasPrimaryLocation W43135845651 @default.
- W4313584565 hasRelatedWork W1975616345 @default.
- W4313584565 hasRelatedWork W2140186469 @default.
- W4313584565 hasRelatedWork W2492526875 @default.
- W4313584565 hasRelatedWork W4206951940 @default.
- W4313584565 hasRelatedWork W4252835526 @default.
- W4313584565 hasRelatedWork W4280563792 @default.
- W4313584565 hasRelatedWork W4293868382 @default.
- W4313584565 hasRelatedWork W4318559728 @default.
- W4313584565 hasRelatedWork W4318719684 @default.
- W4313584565 hasRelatedWork W4382602594 @default.
- W4313584565 hasVolume "11" @default.
- W4313584565 isParatext "false" @default.