Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313585334> ?p ?o ?g. }
- W4313585334 endingPage "210" @default.
- W4313585334 startingPage "210" @default.
- W4313585334 abstract "Spectroscopy data are useful for modelling biological systems such as predicting quality parameters of horticultural products. However, using the wide spectrum of wavelengths is not practical in a production setting. Such data are of high dimensional nature and they tend to result in complex models that are not easily understood. Furthermore, collinearity between different wavelengths dictates that some of the data variables are redundant and may even contribute noise. The use of variable selection methods is one efficient way to obtain an optimal model, andthis was the aim of this work. Taking advantage of a non-contact spectrometer, near infrared spectral data in the range of 800–2500 nm were used to classify bruise damage in three apple cultivars, namely ‘Golden Delicious’, ‘Granny Smith’ and ‘Royal Gala’. Six prominent machine learning classification algorithms were employed, and two variable selection methods were used to determine the most relevant wavelengths for the problem of distinguishing between bruised and non-bruised fruit. The selected wavelengths clustered around 900 nm, 1300 nm, 1500 nm and 1900 nm. The best results were achieved using linear regression and support vector machine based on up to 40 wavelengths: these methods reached precision values in the range of 0.79–0.86, which were all comparable (within error bars) to a classifier based on the entire range of frequencies. The results also provided an open-source based framework that is useful towards the development of multi-spectral applications such as rapid grading of apples based on mechanical damage, and it can also be emulated and applied for other types of defects on fresh produce." @default.
- W4313585334 created "2023-01-06" @default.
- W4313585334 creator A5006179100 @default.
- W4313585334 creator A5026477213 @default.
- W4313585334 creator A5043533864 @default.
- W4313585334 creator A5051815313 @default.
- W4313585334 creator A5081709937 @default.
- W4313585334 creator A5082528825 @default.
- W4313585334 date "2023-01-03" @default.
- W4313585334 modified "2023-10-17" @default.
- W4313585334 title "Feature Reduction for the Classification of Bruise Damage to Apple Fruit Using a Contactless FT-NIR Spectroscopy with Machine Learning" @default.
- W4313585334 cites W1863210765 @default.
- W4313585334 cites W1966824521 @default.
- W4313585334 cites W1969939319 @default.
- W4313585334 cites W1976996306 @default.
- W4313585334 cites W1977797384 @default.
- W4313585334 cites W1989019165 @default.
- W4313585334 cites W1994614480 @default.
- W4313585334 cites W1996195892 @default.
- W4313585334 cites W2004288788 @default.
- W4313585334 cites W2005337366 @default.
- W4313585334 cites W2018644738 @default.
- W4313585334 cites W2020931744 @default.
- W4313585334 cites W2021754455 @default.
- W4313585334 cites W2022959860 @default.
- W4313585334 cites W2024348239 @default.
- W4313585334 cites W2035728987 @default.
- W4313585334 cites W2043765710 @default.
- W4313585334 cites W2054068935 @default.
- W4313585334 cites W2056792949 @default.
- W4313585334 cites W2057035651 @default.
- W4313585334 cites W2060791056 @default.
- W4313585334 cites W2076307067 @default.
- W4313585334 cites W2102636708 @default.
- W4313585334 cites W2103804908 @default.
- W4313585334 cites W2141146166 @default.
- W4313585334 cites W2149715744 @default.
- W4313585334 cites W2158945324 @default.
- W4313585334 cites W2239556874 @default.
- W4313585334 cites W2765529088 @default.
- W4313585334 cites W2767754055 @default.
- W4313585334 cites W2784492203 @default.
- W4313585334 cites W2799520325 @default.
- W4313585334 cites W2803457259 @default.
- W4313585334 cites W2806031239 @default.
- W4313585334 cites W2808203063 @default.
- W4313585334 cites W2893240771 @default.
- W4313585334 cites W2914368704 @default.
- W4313585334 cites W2965479055 @default.
- W4313585334 cites W2971795702 @default.
- W4313585334 cites W2988198700 @default.
- W4313585334 cites W2988932415 @default.
- W4313585334 cites W2990089630 @default.
- W4313585334 cites W3036063341 @default.
- W4313585334 cites W3093460772 @default.
- W4313585334 cites W3152858711 @default.
- W4313585334 cites W3156671431 @default.
- W4313585334 cites W3184873480 @default.
- W4313585334 cites W3200007473 @default.
- W4313585334 cites W4200470058 @default.
- W4313585334 cites W4200542879 @default.
- W4313585334 cites W4224233335 @default.
- W4313585334 cites W4226420610 @default.
- W4313585334 cites W4281567075 @default.
- W4313585334 cites W4291514975 @default.
- W4313585334 doi "https://doi.org/10.3390/foods12010210" @default.
- W4313585334 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36613425" @default.
- W4313585334 hasPublicationYear "2023" @default.
- W4313585334 type Work @default.
- W4313585334 citedByCount "7" @default.
- W4313585334 countsByYear W43135853342023 @default.
- W4313585334 crossrefType "journal-article" @default.
- W4313585334 hasAuthorship W4313585334A5006179100 @default.
- W4313585334 hasAuthorship W4313585334A5026477213 @default.
- W4313585334 hasAuthorship W4313585334A5043533864 @default.
- W4313585334 hasAuthorship W4313585334A5051815313 @default.
- W4313585334 hasAuthorship W4313585334A5081709937 @default.
- W4313585334 hasAuthorship W4313585334A5082528825 @default.
- W4313585334 hasBestOaLocation W43135853341 @default.
- W4313585334 hasConcept C105795698 @default.
- W4313585334 hasConcept C106192678 @default.
- W4313585334 hasConcept C120665830 @default.
- W4313585334 hasConcept C121332964 @default.
- W4313585334 hasConcept C12267149 @default.
- W4313585334 hasConcept C141071460 @default.
- W4313585334 hasConcept C148483581 @default.
- W4313585334 hasConcept C153180895 @default.
- W4313585334 hasConcept C154945302 @default.
- W4313585334 hasConcept C186060115 @default.
- W4313585334 hasConcept C2781424195 @default.
- W4313585334 hasConcept C33390570 @default.
- W4313585334 hasConcept C33923547 @default.
- W4313585334 hasConcept C41008148 @default.
- W4313585334 hasConcept C43571822 @default.
- W4313585334 hasConcept C6260449 @default.
- W4313585334 hasConcept C70518039 @default.
- W4313585334 hasConcept C71924100 @default.
- W4313585334 hasConcept C86803240 @default.