Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313585545> ?p ?o ?g. }
- W4313585545 abstract "Introduction The main purpose of this study is to extract the rules and patterns governing the behavioral intention of consumers towards the adoption of genetically modified foods (GMFs). Method The proposed method is a combination of Rough Set Theory (RST) and Flow Network Graph (FNG). Data was collected from 386 consumers to extract rough rules. 13 rules have been chosen from 289 original rules that were divided into three groups: low, medium, and high intention to use GMFs. They were chosen because of the support values and other indexes that were used in the RST. Eventually, to interpret the performance of the generated rules, FNG were illustrated for each decision-making class, and seven patterns were extracted. Results The findings confirm that corporate social responsibilities, consumer concerns, occupational status, and consumer autonomy are more important than other observed dimensions in consumers' decision-making. Moreover, the findings illustrate that combining Rough Set Theory and Flow Network Graph could predict customers' intentions and provide valuable information for policy-makers in related active industries. Discussion Based on the analysis outcomes, the most significant factors that affect consumers' intention to use GMFs are: “consumer perception of CSR”; “consumer concerns”; “occupational status”; and “consumer autonomy”. Thus, managers and policymakers must pay more attention to these concepts when they survey consumer intention behavior." @default.
- W4313585545 created "2023-01-06" @default.
- W4313585545 creator A5011406372 @default.
- W4313585545 creator A5023028507 @default.
- W4313585545 creator A5042793783 @default.
- W4313585545 creator A5050628690 @default.
- W4313585545 date "2023-01-04" @default.
- W4313585545 modified "2023-10-18" @default.
- W4313585545 title "Modeling adoption of genetically modified foods: Application of Rough Set Theory and Flow Network Graph" @default.
- W4313585545 cites W1573313327 @default.
- W4313585545 cites W1782568864 @default.
- W4313585545 cites W1943936933 @default.
- W4313585545 cites W1978030759 @default.
- W4313585545 cites W1980861610 @default.
- W4313585545 cites W1981755567 @default.
- W4313585545 cites W1996814018 @default.
- W4313585545 cites W2021556161 @default.
- W4313585545 cites W2021948538 @default.
- W4313585545 cites W2033749785 @default.
- W4313585545 cites W2045089716 @default.
- W4313585545 cites W2048004524 @default.
- W4313585545 cites W2050909823 @default.
- W4313585545 cites W2057442287 @default.
- W4313585545 cites W2069478583 @default.
- W4313585545 cites W2072771991 @default.
- W4313585545 cites W2084522290 @default.
- W4313585545 cites W2086262717 @default.
- W4313585545 cites W2113750643 @default.
- W4313585545 cites W2122517769 @default.
- W4313585545 cites W2147042167 @default.
- W4313585545 cites W2149106991 @default.
- W4313585545 cites W2152774643 @default.
- W4313585545 cites W2159856483 @default.
- W4313585545 cites W2191938253 @default.
- W4313585545 cites W2339630101 @default.
- W4313585545 cites W2468607305 @default.
- W4313585545 cites W2500780007 @default.
- W4313585545 cites W2511833740 @default.
- W4313585545 cites W2524838435 @default.
- W4313585545 cites W2555933387 @default.
- W4313585545 cites W2790843050 @default.
- W4313585545 cites W2803019396 @default.
- W4313585545 cites W2805577377 @default.
- W4313585545 cites W2893690280 @default.
- W4313585545 cites W2899383023 @default.
- W4313585545 cites W2913372729 @default.
- W4313585545 cites W2913902393 @default.
- W4313585545 cites W2916167611 @default.
- W4313585545 cites W2918843616 @default.
- W4313585545 cites W2924044630 @default.
- W4313585545 cites W2940605745 @default.
- W4313585545 cites W2963243416 @default.
- W4313585545 cites W2970923629 @default.
- W4313585545 cites W2974833901 @default.
- W4313585545 cites W2980360693 @default.
- W4313585545 cites W2987721108 @default.
- W4313585545 cites W2998386209 @default.
- W4313585545 cites W3003609344 @default.
- W4313585545 cites W3022544074 @default.
- W4313585545 cites W3031131360 @default.
- W4313585545 cites W3036874405 @default.
- W4313585545 cites W3041262784 @default.
- W4313585545 cites W3082308521 @default.
- W4313585545 cites W3094639835 @default.
- W4313585545 cites W3097584085 @default.
- W4313585545 cites W3099666838 @default.
- W4313585545 cites W3104365011 @default.
- W4313585545 cites W3109750311 @default.
- W4313585545 cites W3117046082 @default.
- W4313585545 cites W3124411438 @default.
- W4313585545 cites W3126903489 @default.
- W4313585545 cites W3128011748 @default.
- W4313585545 cites W3131967653 @default.
- W4313585545 cites W3132792792 @default.
- W4313585545 cites W3134720012 @default.
- W4313585545 cites W3167763755 @default.
- W4313585545 cites W3178787544 @default.
- W4313585545 cites W3197300883 @default.
- W4313585545 cites W3197360786 @default.
- W4313585545 cites W3198055480 @default.
- W4313585545 cites W3202734386 @default.
- W4313585545 cites W3207918145 @default.
- W4313585545 cites W3208286764 @default.
- W4313585545 cites W4200260462 @default.
- W4313585545 cites W4220726498 @default.
- W4313585545 cites W4280628321 @default.
- W4313585545 doi "https://doi.org/10.3389/fsufs.2022.992054" @default.
- W4313585545 hasPublicationYear "2023" @default.
- W4313585545 type Work @default.
- W4313585545 citedByCount "0" @default.
- W4313585545 crossrefType "journal-article" @default.
- W4313585545 hasAuthorship W4313585545A5011406372 @default.
- W4313585545 hasAuthorship W4313585545A5023028507 @default.
- W4313585545 hasAuthorship W4313585545A5042793783 @default.
- W4313585545 hasAuthorship W4313585545A5050628690 @default.
- W4313585545 hasBestOaLocation W43135855451 @default.
- W4313585545 hasConcept C111012933 @default.
- W4313585545 hasConcept C124101348 @default.
- W4313585545 hasConcept C132525143 @default.
- W4313585545 hasConcept C144133560 @default.