Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313587384> ?p ?o ?g. }
- W4313587384 endingPage "17" @default.
- W4313587384 startingPage "17" @default.
- W4313587384 abstract "Metallographic analyses of nodular iron casting methods are based on visual comparisons according to measuring standards. Specifically, the microstructure is analyzed in a subjective manner by comparing the extracted image from the microscope to pre-defined image templates. The achieved classifications can be confused, due to the fact that the features extracted by a human being could be interpreted differently depending on many variables, such as the conditions of the observer. In particular, this kind of problem represents an uncertainty when classifying metallic properties, which can influence the integrity of castings that play critical roles in safety devices or structures. Although there are existing solutions working with extracted images and applying some computer vision techniques to manage the measurements of the microstructure, those results are not too accurate. In fact, they are not able to characterize all specific features of the image and, they cannot be adapted to several characterization methods depending on the specific regulation or customer. Hence, in order to solve this problem, we propose a framework to improve and automatize the evaluations by combining classical machine vision techniques for feature extraction and deep learning technologies, to objectively make classifications. To adapt to the real analysis environments, all included inputs in our models were gathered directly from the historical repository of metallurgy from the Azterlan Research Centre (labeled using expert knowledge from engineers). The proposed approach concludes that these techniques (a classification under a pipeline of deep neural networks and the quality classification using an ANN classifier) are viable to carry out the extraction and classification of metallographic features with great accuracy and time, and it is possible to deploy software with the models to work on real-time situations. Moreover, this method provides a direct way to classify the metallurgical quality of the molten metal, allowing us to determine the possible behaviors of the final produced parts." @default.
- W4313587384 created "2023-01-06" @default.
- W4313587384 creator A5003633944 @default.
- W4313587384 creator A5008372294 @default.
- W4313587384 creator A5037517132 @default.
- W4313587384 creator A5048052948 @default.
- W4313587384 creator A5058922555 @default.
- W4313587384 date "2023-01-04" @default.
- W4313587384 modified "2023-09-29" @default.
- W4313587384 title "An Objective Metallographic Analysis Approach Based on Advanced Image Processing Techniques" @default.
- W4313587384 cites W1988277081 @default.
- W4313587384 cites W1988790447 @default.
- W4313587384 cites W1990808267 @default.
- W4313587384 cites W2037760133 @default.
- W4313587384 cites W2062848325 @default.
- W4313587384 cites W2075127671 @default.
- W4313587384 cites W2076266337 @default.
- W4313587384 cites W2088252378 @default.
- W4313587384 cites W2099540110 @default.
- W4313587384 cites W2141770106 @default.
- W4313587384 cites W2516488393 @default.
- W4313587384 cites W2523978617 @default.
- W4313587384 cites W2548003296 @default.
- W4313587384 cites W2581082771 @default.
- W4313587384 cites W2742371980 @default.
- W4313587384 cites W2794026873 @default.
- W4313587384 cites W2809410743 @default.
- W4313587384 cites W2810451272 @default.
- W4313587384 cites W2910302825 @default.
- W4313587384 cites W2913401199 @default.
- W4313587384 cites W2938214891 @default.
- W4313587384 cites W2946901414 @default.
- W4313587384 cites W2954996726 @default.
- W4313587384 cites W3005428855 @default.
- W4313587384 cites W3012101922 @default.
- W4313587384 cites W3034784856 @default.
- W4313587384 cites W3102564565 @default.
- W4313587384 cites W3102912986 @default.
- W4313587384 cites W3123994991 @default.
- W4313587384 cites W3193736071 @default.
- W4313587384 cites W4210651582 @default.
- W4313587384 cites W4232841423 @default.
- W4313587384 cites W4236137412 @default.
- W4313587384 cites W4249293825 @default.
- W4313587384 cites W4287888680 @default.
- W4313587384 doi "https://doi.org/10.3390/jmmp7010017" @default.
- W4313587384 hasPublicationYear "2023" @default.
- W4313587384 type Work @default.
- W4313587384 citedByCount "1" @default.
- W4313587384 countsByYear W43135873842023 @default.
- W4313587384 crossrefType "journal-article" @default.
- W4313587384 hasAuthorship W4313587384A5003633944 @default.
- W4313587384 hasAuthorship W4313587384A5008372294 @default.
- W4313587384 hasAuthorship W4313587384A5037517132 @default.
- W4313587384 hasAuthorship W4313587384A5048052948 @default.
- W4313587384 hasAuthorship W4313587384A5058922555 @default.
- W4313587384 hasBestOaLocation W43135873841 @default.
- W4313587384 hasConcept C108583219 @default.
- W4313587384 hasConcept C115961682 @default.
- W4313587384 hasConcept C119857082 @default.
- W4313587384 hasConcept C124101348 @default.
- W4313587384 hasConcept C153180895 @default.
- W4313587384 hasConcept C154945302 @default.
- W4313587384 hasConcept C199360897 @default.
- W4313587384 hasConcept C31972630 @default.
- W4313587384 hasConcept C41008148 @default.
- W4313587384 hasConcept C43521106 @default.
- W4313587384 hasConcept C50644808 @default.
- W4313587384 hasConcept C52622490 @default.
- W4313587384 hasConcept C82714645 @default.
- W4313587384 hasConcept C9417928 @default.
- W4313587384 hasConcept C95623464 @default.
- W4313587384 hasConceptScore W4313587384C108583219 @default.
- W4313587384 hasConceptScore W4313587384C115961682 @default.
- W4313587384 hasConceptScore W4313587384C119857082 @default.
- W4313587384 hasConceptScore W4313587384C124101348 @default.
- W4313587384 hasConceptScore W4313587384C153180895 @default.
- W4313587384 hasConceptScore W4313587384C154945302 @default.
- W4313587384 hasConceptScore W4313587384C199360897 @default.
- W4313587384 hasConceptScore W4313587384C31972630 @default.
- W4313587384 hasConceptScore W4313587384C41008148 @default.
- W4313587384 hasConceptScore W4313587384C43521106 @default.
- W4313587384 hasConceptScore W4313587384C50644808 @default.
- W4313587384 hasConceptScore W4313587384C52622490 @default.
- W4313587384 hasConceptScore W4313587384C82714645 @default.
- W4313587384 hasConceptScore W4313587384C9417928 @default.
- W4313587384 hasConceptScore W4313587384C95623464 @default.
- W4313587384 hasIssue "1" @default.
- W4313587384 hasLocation W43135873841 @default.
- W4313587384 hasOpenAccess W4313587384 @default.
- W4313587384 hasPrimaryLocation W43135873841 @default.
- W4313587384 hasRelatedWork W2795261237 @default.
- W4313587384 hasRelatedWork W3014300295 @default.
- W4313587384 hasRelatedWork W3164822677 @default.
- W4313587384 hasRelatedWork W4223943233 @default.
- W4313587384 hasRelatedWork W4225161397 @default.
- W4313587384 hasRelatedWork W4312200629 @default.
- W4313587384 hasRelatedWork W4360585206 @default.