Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313590960> ?p ?o ?g. }
- W4313590960 abstract "Abstract The saline aquifer is the most reliable place where anthropogenic carbon dioxide gas storage has shown a promising future. This paper evaluates and predicts the capacities of different carbon dioxide storage trapping mechanisms in storing carbon dioxide gas in low porosity and permeability deep saline aquifers by using commercial reservoir simulator software i.e., Computer modeling group (CMG). Four carbon dioxide storage trapping modeled and simulated were structural or stratigraphic trapping mechanisms, residual trapping mechanisms, solubility trapping mechanisms, and mineral trapping mechanisms. Carbon dioxide gas was injected into a deep saline aquifer for 15 years, followed by 833 years of post-injection. To reflect the real field reality and have a reasonable approximation of the amount of carbon dioxide which can be stored in an aquifer, this paper included water vaporization effects that occur during carbon dioxide injection and water injection operations so as to optimize residual and solubility trapping mechanisms as the most important trapping mechanisms. Furthermore, the effects of different important parameters such as salinity, vertical-to-horizontal permeability ratio, injection rate, bottom hole pressure, and temperature on each carbon dioxide trapping mechanism were analyzed. Results revealed that each carbon dioxide trapping mechanism has a different capacity for storing carbon dioxide and could be either affected linearly or nonlinearly with various parameters. Higher aquifer temperatures are not recommended for carbon dioxide storage because most of the carbon dioxide gas is stored as free gas, which increases the risk of leakage in case of mechanical failure or imbalance. Excess salinity is the only factor that reduces aquifer storage capacity. Furthermore, it was found that an aquifer with a lower vertical-to-horizontal permeability ratio is recommended for carbon dioxide storage because it increases carbon dioxide stored in an immobile phase, which avoids risk leakages. There was an increase of 43.2% and a decrease of 16.84% for minimum and maximum vertical-to-horizontal permeability (kv/kh) ratios, respectively, compared to the base for residual trapping mechanisms. Also, there was a decrease of carbon dioxide dissolved by 19% at maximum kv/kh ratios and an increase of 58% at minimum kv/kh ratios, compared to the base case. Further, there was an increase of carbon dioxide trapped by 96.4% and dissolved by 97% when water was injected at a higher rate compared to the base case (no water injection). Thus, a high injection rate is suggested to enhance residual and solubility trapping mechanisms. It is recommended that the carbon dioxide injection rate and bottom hole pressure be kept at optimal levels to avoid mechanical failure due to aquifer pressures building up, which can increase the risk of leakages and must be monitored and controlled at the surface using pressure gauges or sensor technology." @default.
- W4313590960 created "2023-01-06" @default.
- W4313590960 creator A5020063908 @default.
- W4313590960 creator A5026479508 @default.
- W4313590960 creator A5030147019 @default.
- W4313590960 creator A5072120719 @default.
- W4313590960 date "2023-02-08" @default.
- W4313590960 modified "2023-09-29" @default.
- W4313590960 title "Carbon Dioxide Sequestration in Low Porosity and Permeability Deep Saline Aquifer: Numerical Simulation Method" @default.
- W4313590960 cites W1536439283 @default.
- W4313590960 cites W1715420317 @default.
- W4313590960 cites W1967497314 @default.
- W4313590960 cites W1970249057 @default.
- W4313590960 cites W1980277902 @default.
- W4313590960 cites W1998453037 @default.
- W4313590960 cites W1999122590 @default.
- W4313590960 cites W2001888180 @default.
- W4313590960 cites W2005547653 @default.
- W4313590960 cites W2006853934 @default.
- W4313590960 cites W2013449089 @default.
- W4313590960 cites W2014030308 @default.
- W4313590960 cites W2021386989 @default.
- W4313590960 cites W2028828726 @default.
- W4313590960 cites W2029031700 @default.
- W4313590960 cites W2030761456 @default.
- W4313590960 cites W2031940438 @default.
- W4313590960 cites W2032247692 @default.
- W4313590960 cites W2034555818 @default.
- W4313590960 cites W2034612718 @default.
- W4313590960 cites W2036753939 @default.
- W4313590960 cites W2046399768 @default.
- W4313590960 cites W2048685178 @default.
- W4313590960 cites W2058240529 @default.
- W4313590960 cites W2059070443 @default.
- W4313590960 cites W2063302144 @default.
- W4313590960 cites W2086772897 @default.
- W4313590960 cites W2129288307 @default.
- W4313590960 cites W2148244472 @default.
- W4313590960 cites W2191123632 @default.
- W4313590960 cites W2256437107 @default.
- W4313590960 cites W2556478171 @default.
- W4313590960 cites W2563038316 @default.
- W4313590960 cites W2620473850 @default.
- W4313590960 cites W2743749898 @default.
- W4313590960 cites W2759565175 @default.
- W4313590960 cites W2765416659 @default.
- W4313590960 cites W2772426503 @default.
- W4313590960 cites W2772438029 @default.
- W4313590960 cites W2787394422 @default.
- W4313590960 cites W2884332071 @default.
- W4313590960 cites W2901879594 @default.
- W4313590960 cites W2924596737 @default.
- W4313590960 cites W2958702840 @default.
- W4313590960 cites W2994369330 @default.
- W4313590960 cites W3003439432 @default.
- W4313590960 cites W3005187532 @default.
- W4313590960 cites W3006628032 @default.
- W4313590960 cites W3048466813 @default.
- W4313590960 cites W3093355082 @default.
- W4313590960 cites W3131350358 @default.
- W4313590960 cites W3135002387 @default.
- W4313590960 cites W3138479324 @default.
- W4313590960 cites W3142831270 @default.
- W4313590960 cites W3172998879 @default.
- W4313590960 cites W3185416849 @default.
- W4313590960 cites W3209804007 @default.
- W4313590960 cites W3217597920 @default.
- W4313590960 cites W4205890367 @default.
- W4313590960 cites W4206029177 @default.
- W4313590960 cites W4220658494 @default.
- W4313590960 cites W4220682311 @default.
- W4313590960 cites W4221071972 @default.
- W4313590960 cites W4223428828 @default.
- W4313590960 cites W4224320622 @default.
- W4313590960 cites W4229015786 @default.
- W4313590960 cites W4283453458 @default.
- W4313590960 cites W4309271037 @default.
- W4313590960 doi "https://doi.org/10.1115/1.4056612" @default.
- W4313590960 hasPublicationYear "2023" @default.
- W4313590960 type Work @default.
- W4313590960 citedByCount "1" @default.
- W4313590960 countsByYear W43135909602023 @default.
- W4313590960 crossrefType "journal-article" @default.
- W4313590960 hasAuthorship W4313590960A5020063908 @default.
- W4313590960 hasAuthorship W4313590960A5026479508 @default.
- W4313590960 hasAuthorship W4313590960A5030147019 @default.
- W4313590960 hasAuthorship W4313590960A5072120719 @default.
- W4313590960 hasConcept C105569014 @default.
- W4313590960 hasConcept C107872376 @default.
- W4313590960 hasConcept C111368507 @default.
- W4313590960 hasConcept C120882062 @default.
- W4313590960 hasConcept C127313418 @default.
- W4313590960 hasConcept C127413603 @default.
- W4313590960 hasConcept C129513315 @default.
- W4313590960 hasConcept C130622031 @default.
- W4313590960 hasConcept C159390177 @default.
- W4313590960 hasConcept C159985019 @default.
- W4313590960 hasConcept C178790620 @default.
- W4313590960 hasConcept C185592680 @default.
- W4313590960 hasConcept C187320778 @default.