Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313590967> ?p ?o ?g. }
- W4313590967 endingPage "33" @default.
- W4313590967 startingPage "33" @default.
- W4313590967 abstract "Remote sensing image with high spatial and temporal resolution is very important for rational planning and scientific management of land resources. However, due to the influence of satellite resolution, revisit period, and cloud pollution, it is difficult to obtain high spatial and temporal resolution images. In order to effectively solve the “space–time contradiction” problem in remote sensing application, based on GF-2PMS (GF-2) and PlanetSope (PS) data, this paper compares and analyzes the applicability of FSDAF (flexible spatiotemporal data fusion), STDFA (the spatial temporal data fusion approach), and Fit_FC (regression model fitting, spatial filtering, and residual compensation) in different terrain conditions in karst area. The results show the following. (1) For the boundary area of water and land, the FSDAF model has the best fusion effect in land boundary recognition, and provides rich ground object information. The Fit_FC model is less effective, and the image is blurry. (2) For areas such as mountains, with large changes in vegetation coverage, the spatial resolution of the images fused by the three models is significantly improved. Among them, the STDFA model has the clearest and richest spatial structure information. The fused image of the Fit_FC model has the highest similarity with the verification image, which can better restore the coverage changes of crops and other vegetation, but the actual spatial resolution of the fused image is relatively poor, the image quality is fuzzy, and the land boundary area cannot be clearly identified. (3) For areas with dense buildings, such as cities, the fusion image of the FSDAF and STDFA models is clearer and the Fit_FC model can better reflect the changes in land use. In summary, compared with the Fit_FC model, the FSDAF model and the STDFA model have higher image prediction accuracy, especially in the recognition of building contours and other surface features, but they are not suitable for the dynamic monitoring of vegetation such as crops. At the same time, the image resolution of the Fit_FC model after fusion is slightly lower than that of the other two models. In particular, in the water–land boundary area, the fusion accuracy is poor, but the model of Fit_FC has unique advantages in vegetation dynamic monitoring. In this paper, three spatiotemporal fusion models are used to fuse GF-2 and PS images, which improves the recognition accuracy of surface objects and provides a new idea for fine classification of land use in karst areas." @default.
- W4313590967 created "2023-01-06" @default.
- W4313590967 creator A5056158655 @default.
- W4313590967 creator A5058420855 @default.
- W4313590967 creator A5071773009 @default.
- W4313590967 creator A5072122438 @default.
- W4313590967 creator A5082576629 @default.
- W4313590967 creator A5084754656 @default.
- W4313590967 date "2022-12-22" @default.
- W4313590967 modified "2023-09-26" @default.
- W4313590967 title "Applicability Analysis of GF-2PMS and PLANETSCOPE Data for Ground Object Recognition in Karst Region" @default.
- W4313590967 cites W1545165258 @default.
- W4313590967 cites W1963768209 @default.
- W4313590967 cites W1970515153 @default.
- W4313590967 cites W1982956952 @default.
- W4313590967 cites W2003224325 @default.
- W4313590967 cites W2017193019 @default.
- W4313590967 cites W2042900198 @default.
- W4313590967 cites W2056811372 @default.
- W4313590967 cites W2061929982 @default.
- W4313590967 cites W2081399384 @default.
- W4313590967 cites W2105307752 @default.
- W4313590967 cites W2112659164 @default.
- W4313590967 cites W2131625616 @default.
- W4313590967 cites W2200350976 @default.
- W4313590967 cites W2224309144 @default.
- W4313590967 cites W2562900277 @default.
- W4313590967 cites W2743026419 @default.
- W4313590967 cites W2750580605 @default.
- W4313590967 cites W2756303373 @default.
- W4313590967 cites W2766829849 @default.
- W4313590967 cites W2767886251 @default.
- W4313590967 cites W2795018073 @default.
- W4313590967 cites W2795126628 @default.
- W4313590967 cites W2912819481 @default.
- W4313590967 cites W2921108718 @default.
- W4313590967 cites W2944939833 @default.
- W4313590967 cites W2959744841 @default.
- W4313590967 cites W2973132936 @default.
- W4313590967 cites W2979638430 @default.
- W4313590967 cites W2985998130 @default.
- W4313590967 cites W2998413408 @default.
- W4313590967 cites W3001892559 @default.
- W4313590967 cites W3010650493 @default.
- W4313590967 cites W3047004003 @default.
- W4313590967 cites W3090865140 @default.
- W4313590967 cites W3112639481 @default.
- W4313590967 cites W3114905982 @default.
- W4313590967 cites W3126855404 @default.
- W4313590967 cites W3132908999 @default.
- W4313590967 cites W3159031554 @default.
- W4313590967 cites W3174053575 @default.
- W4313590967 cites W4210565498 @default.
- W4313590967 cites W4214739055 @default.
- W4313590967 cites W4214774567 @default.
- W4313590967 cites W4223923141 @default.
- W4313590967 cites W4282572717 @default.
- W4313590967 cites W4283589924 @default.
- W4313590967 cites W4284685167 @default.
- W4313590967 cites W4292247163 @default.
- W4313590967 doi "https://doi.org/10.3390/land12010033" @default.
- W4313590967 hasPublicationYear "2022" @default.
- W4313590967 type Work @default.
- W4313590967 citedByCount "0" @default.
- W4313590967 crossrefType "journal-article" @default.
- W4313590967 hasAuthorship W4313590967A5056158655 @default.
- W4313590967 hasAuthorship W4313590967A5058420855 @default.
- W4313590967 hasAuthorship W4313590967A5071773009 @default.
- W4313590967 hasAuthorship W4313590967A5072122438 @default.
- W4313590967 hasAuthorship W4313590967A5082576629 @default.
- W4313590967 hasAuthorship W4313590967A5084754656 @default.
- W4313590967 hasBestOaLocation W43135909671 @default.
- W4313590967 hasConcept C115961682 @default.
- W4313590967 hasConcept C134306372 @default.
- W4313590967 hasConcept C142724271 @default.
- W4313590967 hasConcept C146849305 @default.
- W4313590967 hasConcept C154945302 @default.
- W4313590967 hasConcept C159620131 @default.
- W4313590967 hasConcept C161840515 @default.
- W4313590967 hasConcept C205372480 @default.
- W4313590967 hasConcept C205649164 @default.
- W4313590967 hasConcept C2776133958 @default.
- W4313590967 hasConcept C33923547 @default.
- W4313590967 hasConcept C39432304 @default.
- W4313590967 hasConcept C41008148 @default.
- W4313590967 hasConcept C58640448 @default.
- W4313590967 hasConcept C62354387 @default.
- W4313590967 hasConcept C62649853 @default.
- W4313590967 hasConcept C69744172 @default.
- W4313590967 hasConcept C71924100 @default.
- W4313590967 hasConceptScore W4313590967C115961682 @default.
- W4313590967 hasConceptScore W4313590967C134306372 @default.
- W4313590967 hasConceptScore W4313590967C142724271 @default.
- W4313590967 hasConceptScore W4313590967C146849305 @default.
- W4313590967 hasConceptScore W4313590967C154945302 @default.
- W4313590967 hasConceptScore W4313590967C159620131 @default.
- W4313590967 hasConceptScore W4313590967C161840515 @default.
- W4313590967 hasConceptScore W4313590967C205372480 @default.