Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313590987> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4313590987 endingPage "9" @default.
- W4313590987 startingPage "1" @default.
- W4313590987 abstract "Bearing fault diagnosis is essential for monitoring rotating machinery and equipment operating conditions. They can also identify safety hazards and avoid economic losses promptly. However, there is a shortage of tagged fault data in most factories, and it is challenging to ask them to exchange labeled fault data, especially considering the data privacy needs of customers. This article proposes a swarm learning (SL) framework that combines adversarial domain networks with convolutional neural networks (CNNs) to address this problem. The framework regards every factory as an edge-computing node and solves labeled data insufficiency and privacy protection by fusing network parameters. First, a CNN is used to compute each node, and leaders are dynamically selected to merge model parameters during the training process. Second, an adversarial domain network minimizes the feature distribution variance between nodes. Finally, an SL algorithm was used to select virtual central nodes to determine the exchange process of the model parameters among different nodes. Four datasets were used to design the experiments and demonstrate the proposed approach’s reliability. The experimental results show that the proposed framework can improve computational efficiency and reduce communication costs without relying on a central server. A final shared model can also achieve enhanced accuracy in fault diagnosis at each edge node." @default.
- W4313590987 created "2023-01-06" @default.
- W4313590987 creator A5004901154 @default.
- W4313590987 creator A5005171833 @default.
- W4313590987 creator A5019131253 @default.
- W4313590987 creator A5047342774 @default.
- W4313590987 creator A5091072755 @default.
- W4313590987 date "2023-01-01" @default.
- W4313590987 modified "2023-09-30" @default.
- W4313590987 title "A Data Privacy Protection Diagnosis Framework for Multiple Machines Vibration Signals Based on a Swarm Learning Algorithm" @default.
- W4313590987 cites W2152195021 @default.
- W4313590987 cites W243674440 @default.
- W4313590987 cites W2556013418 @default.
- W4313590987 cites W2746111230 @default.
- W4313590987 cites W2765226309 @default.
- W4313590987 cites W2791694051 @default.
- W4313590987 cites W2794869810 @default.
- W4313590987 cites W2801396593 @default.
- W4313590987 cites W2904460913 @default.
- W4313590987 cites W2907541186 @default.
- W4313590987 cites W2922660557 @default.
- W4313590987 cites W3096211637 @default.
- W4313590987 cites W3115710758 @default.
- W4313590987 cites W3137896025 @default.
- W4313590987 cites W3138513656 @default.
- W4313590987 cites W3138762281 @default.
- W4313590987 cites W3164573547 @default.
- W4313590987 cites W3180515657 @default.
- W4313590987 cites W3200230256 @default.
- W4313590987 cites W3215227219 @default.
- W4313590987 cites W4200385936 @default.
- W4313590987 cites W4241570161 @default.
- W4313590987 cites W4285079201 @default.
- W4313590987 cites W4286543467 @default.
- W4313590987 cites W4292403432 @default.
- W4313590987 cites W4292651813 @default.
- W4313590987 doi "https://doi.org/10.1109/tim.2023.3234035" @default.
- W4313590987 hasPublicationYear "2023" @default.
- W4313590987 type Work @default.
- W4313590987 citedByCount "2" @default.
- W4313590987 countsByYear W43135909872023 @default.
- W4313590987 crossrefType "journal-article" @default.
- W4313590987 hasAuthorship W4313590987A5004901154 @default.
- W4313590987 hasAuthorship W4313590987A5005171833 @default.
- W4313590987 hasAuthorship W4313590987A5019131253 @default.
- W4313590987 hasAuthorship W4313590987A5047342774 @default.
- W4313590987 hasAuthorship W4313590987A5091072755 @default.
- W4313590987 hasConcept C11413529 @default.
- W4313590987 hasConcept C119857082 @default.
- W4313590987 hasConcept C124101348 @default.
- W4313590987 hasConcept C127413603 @default.
- W4313590987 hasConcept C154945302 @default.
- W4313590987 hasConcept C41008148 @default.
- W4313590987 hasConcept C62611344 @default.
- W4313590987 hasConcept C66938386 @default.
- W4313590987 hasConcept C81363708 @default.
- W4313590987 hasConceptScore W4313590987C11413529 @default.
- W4313590987 hasConceptScore W4313590987C119857082 @default.
- W4313590987 hasConceptScore W4313590987C124101348 @default.
- W4313590987 hasConceptScore W4313590987C127413603 @default.
- W4313590987 hasConceptScore W4313590987C154945302 @default.
- W4313590987 hasConceptScore W4313590987C41008148 @default.
- W4313590987 hasConceptScore W4313590987C62611344 @default.
- W4313590987 hasConceptScore W4313590987C66938386 @default.
- W4313590987 hasConceptScore W4313590987C81363708 @default.
- W4313590987 hasFunder F4320321001 @default.
- W4313590987 hasFunder F4320321921 @default.
- W4313590987 hasLocation W43135909871 @default.
- W4313590987 hasOpenAccess W4313590987 @default.
- W4313590987 hasPrimaryLocation W43135909871 @default.
- W4313590987 hasRelatedWork W2961085424 @default.
- W4313590987 hasRelatedWork W3016958897 @default.
- W4313590987 hasRelatedWork W3021430260 @default.
- W4313590987 hasRelatedWork W3027997911 @default.
- W4313590987 hasRelatedWork W3181746755 @default.
- W4313590987 hasRelatedWork W4283379348 @default.
- W4313590987 hasRelatedWork W4287776258 @default.
- W4313590987 hasRelatedWork W4306674287 @default.
- W4313590987 hasRelatedWork W4312417841 @default.
- W4313590987 hasRelatedWork W4224009465 @default.
- W4313590987 hasVolume "72" @default.
- W4313590987 isParatext "false" @default.
- W4313590987 isRetracted "false" @default.
- W4313590987 workType "article" @default.