Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313591036> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313591036 endingPage "1839" @default.
- W4313591036 startingPage "1825" @default.
- W4313591036 abstract "Autonomous vehicles (AVs) are getting popular because of their usage in a wide range of applications like delivery systems, self-driving taxis, and ambulances. AVs utilize the power of machine learning (ML) and deep learning (DL) algorithms to improve their self-driving learning experiences. The sudden surge in the number of AVs raises the need for distributed learning ecosystem to optimize their self-driving experiences at a rapid pace. Toward this goal, federated learning (FL) benefits, which can create a distributed learning environment for AVs. But, the traditional FL transfers the raw input data directly to a server, which leads to privacy concerns among the end-users. The concept of blockchain helps us to protect privacy, but it requires additional computational infrastructure. The extra infrastructure increases the operational cost for the company handling and maintaining the AVs. Motivated by this, in this paper, the authors introduced the concept of gradient encryption in FL, which preserves the users’ privacy without the additional computation requirements. The computational power present in the edge devices helps to fine-tune the local model and encrypt the input data to preserve privacy without any drop in performance. For performance evaluation, the authors have built a German traffic sign recognition system using a convolutional neural network (CNN) algorithm-based classification system and GeFL. The simulation process is carried out over a wide range of input parameters to analyze the performance at scale. Simulation results of GeFL outperform the conventional FL-based algorithms in terms of accuracy, i.e., 2% higher. Also, the amount of data transferred among the devices in the network is nearly three times less in GeFL compared to the traditional FL." @default.
- W4313591036 created "2023-01-06" @default.
- W4313591036 creator A5004131475 @default.
- W4313591036 creator A5013634827 @default.
- W4313591036 creator A5017365037 @default.
- W4313591036 creator A5023060940 @default.
- W4313591036 creator A5044414974 @default.
- W4313591036 creator A5055678785 @default.
- W4313591036 creator A5058080028 @default.
- W4313591036 creator A5076812824 @default.
- W4313591036 creator A5089077811 @default.
- W4313591036 date "2023-01-01" @default.
- W4313591036 modified "2023-10-18" @default.
- W4313591036 title "<i>GeFL</i>: Gradient Encryption-Aided Privacy Preserved Federated Learning for Autonomous Vehicles" @default.
- W4313591036 cites W2942586735 @default.
- W4313591036 cites W3006655855 @default.
- W4313591036 cites W3018286187 @default.
- W4313591036 cites W3019945581 @default.
- W4313591036 cites W3024193661 @default.
- W4313591036 cites W3033672530 @default.
- W4313591036 cites W3037806987 @default.
- W4313591036 cites W3038119500 @default.
- W4313591036 cites W3096323881 @default.
- W4313591036 cites W3102922920 @default.
- W4313591036 cites W3108876987 @default.
- W4313591036 cites W3126709645 @default.
- W4313591036 cites W3128229778 @default.
- W4313591036 cites W3131170493 @default.
- W4313591036 cites W3133130272 @default.
- W4313591036 cites W3199788090 @default.
- W4313591036 cites W3200219902 @default.
- W4313591036 cites W4200471910 @default.
- W4313591036 cites W4205368719 @default.
- W4313591036 cites W4205691354 @default.
- W4313591036 cites W4206298942 @default.
- W4313591036 cites W4220698464 @default.
- W4313591036 cites W4293428560 @default.
- W4313591036 doi "https://doi.org/10.1109/access.2023.3233983" @default.
- W4313591036 hasPublicationYear "2023" @default.
- W4313591036 type Work @default.
- W4313591036 citedByCount "3" @default.
- W4313591036 countsByYear W43135910362023 @default.
- W4313591036 crossrefType "journal-article" @default.
- W4313591036 hasAuthorship W4313591036A5004131475 @default.
- W4313591036 hasAuthorship W4313591036A5013634827 @default.
- W4313591036 hasAuthorship W4313591036A5017365037 @default.
- W4313591036 hasAuthorship W4313591036A5023060940 @default.
- W4313591036 hasAuthorship W4313591036A5044414974 @default.
- W4313591036 hasAuthorship W4313591036A5055678785 @default.
- W4313591036 hasAuthorship W4313591036A5058080028 @default.
- W4313591036 hasAuthorship W4313591036A5076812824 @default.
- W4313591036 hasAuthorship W4313591036A5089077811 @default.
- W4313591036 hasBestOaLocation W43135910361 @default.
- W4313591036 hasConcept C108583219 @default.
- W4313591036 hasConcept C120314980 @default.
- W4313591036 hasConcept C123201435 @default.
- W4313591036 hasConcept C148730421 @default.
- W4313591036 hasConcept C154945302 @default.
- W4313591036 hasConcept C162307627 @default.
- W4313591036 hasConcept C2778456923 @default.
- W4313591036 hasConcept C38652104 @default.
- W4313591036 hasConcept C41008148 @default.
- W4313591036 hasConcept C81363708 @default.
- W4313591036 hasConceptScore W4313591036C108583219 @default.
- W4313591036 hasConceptScore W4313591036C120314980 @default.
- W4313591036 hasConceptScore W4313591036C123201435 @default.
- W4313591036 hasConceptScore W4313591036C148730421 @default.
- W4313591036 hasConceptScore W4313591036C154945302 @default.
- W4313591036 hasConceptScore W4313591036C162307627 @default.
- W4313591036 hasConceptScore W4313591036C2778456923 @default.
- W4313591036 hasConceptScore W4313591036C38652104 @default.
- W4313591036 hasConceptScore W4313591036C41008148 @default.
- W4313591036 hasConceptScore W4313591036C81363708 @default.
- W4313591036 hasLocation W43135910361 @default.
- W4313591036 hasOpenAccess W4313591036 @default.
- W4313591036 hasPrimaryLocation W43135910361 @default.
- W4313591036 hasRelatedWork W2731899572 @default.
- W4313591036 hasRelatedWork W2999805992 @default.
- W4313591036 hasRelatedWork W3011074480 @default.
- W4313591036 hasRelatedWork W3116150086 @default.
- W4313591036 hasRelatedWork W3133861977 @default.
- W4313591036 hasRelatedWork W3192840557 @default.
- W4313591036 hasRelatedWork W4200173597 @default.
- W4313591036 hasRelatedWork W4291897433 @default.
- W4313591036 hasRelatedWork W4312417841 @default.
- W4313591036 hasRelatedWork W4321369474 @default.
- W4313591036 hasVolume "11" @default.
- W4313591036 isParatext "false" @default.
- W4313591036 isRetracted "false" @default.
- W4313591036 workType "article" @default.