Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313591390> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313591390 abstract "Abstract Background An ever-increasing number of artificial intelligence (AI) models targeting healthcare applications are developed and published every day, but their use in real-world decision-making is limited. Beyond a quantitative assessment, it is important to have a qualitative evaluation of the maturity of these publications with additional details related to trends in the type of data used type of models developed across the healthcare spectrum. Methods We assessed the maturity of selected peer-reviewed AI publications pertinent to healthcare for the years 2019–2021. For the report, the data collection was performed by PubMed search using the Boolean operators “machine learning” OR “artificial intelligence” AND “2021”, OR “2020”, OR ‘‘2019” with the English language and human subject research as of December 31, each year. All three years selected were manually classified into 26 distinct medical specialties. We used the Bidirectional Encoder Representations from Transformers ( BERT) neural networks model to identify the maturity level of research publications based on their abstracts. We further classified a mature publication based on the healthcare specialty and geographical location of the article’s senior author. Finally, we manually annotated specific details from mature publications, such as model type, data type, and disease type. Results Of the 7062 publications relevant to AI in healthcare from 2019–2021, 385 were classified as mature. In 2019, 6.01 percent of publications were mature. 7.7 percent were mature in 2020, and 1.81 percent of publications were mature in 2021. Radiology publications had the most mature model publications across all specialties over the last three years, followed by pathology in 2019, ophthalmology in 2020, and gastroenterology in 2021. Geographical pattern analysis revealed a non-uniform distribution pattern. In 2019 and 2020, the United States ranked first with a frequency of 22 and 50, followed by China with 20 and 47. In 2021, China ranked first with 17 mature articles, followed by the United States with 11 mature articles. Imaging-based data was the primary source, and deep learning was the most frequently used modeling technique in mature publications. Interpretation Despite the growing number of publications of AI models in healthcare, only a few publications have been found to be mature with a potentially positive impact on healthcare. Globally, there is an opportunity to leverage diverse datasets and models across the health spectrum, to develop more mature models and related publications, which can fully realize the potential of AI to transform healthcare." @default.
- W4313591390 created "2023-01-06" @default.
- W4313591390 creator A5010019712 @default.
- W4313591390 creator A5020233467 @default.
- W4313591390 creator A5045360539 @default.
- W4313591390 creator A5047322462 @default.
- W4313591390 creator A5047911401 @default.
- W4313591390 creator A5050110511 @default.
- W4313591390 date "2023-01-04" @default.
- W4313591390 modified "2023-10-16" @default.
- W4313591390 title "Quantitative and Qualitative evaluation of the recent Artificial Intelligence in Healthcare publications using Deep-Learning" @default.
- W4313591390 cites W2002144979 @default.
- W4313591390 cites W2108598243 @default.
- W4313591390 cites W2557738935 @default.
- W4313591390 cites W2889242407 @default.
- W4313591390 cites W2895763047 @default.
- W4313591390 cites W2896445937 @default.
- W4313591390 cites W2939466230 @default.
- W4313591390 cites W2963899699 @default.
- W4313591390 cites W2995225687 @default.
- W4313591390 cites W3013681994 @default.
- W4313591390 cites W3013692475 @default.
- W4313591390 cites W3017644243 @default.
- W4313591390 cites W3039941274 @default.
- W4313591390 cites W3042092008 @default.
- W4313591390 cites W3086667591 @default.
- W4313591390 cites W3089653673 @default.
- W4313591390 cites W3094856308 @default.
- W4313591390 cites W3113541070 @default.
- W4313591390 cites W3119848647 @default.
- W4313591390 cites W3122404219 @default.
- W4313591390 cites W3135721250 @default.
- W4313591390 cites W3136933888 @default.
- W4313591390 cites W3190315597 @default.
- W4313591390 cites W4226358945 @default.
- W4313591390 cites W4296027312 @default.
- W4313591390 doi "https://doi.org/10.1101/2022.12.31.22284092" @default.
- W4313591390 hasPublicationYear "2023" @default.
- W4313591390 type Work @default.
- W4313591390 citedByCount "2" @default.
- W4313591390 countsByYear W43135913902023 @default.
- W4313591390 crossrefType "posted-content" @default.
- W4313591390 hasAuthorship W4313591390A5010019712 @default.
- W4313591390 hasAuthorship W4313591390A5020233467 @default.
- W4313591390 hasAuthorship W4313591390A5045360539 @default.
- W4313591390 hasAuthorship W4313591390A5047322462 @default.
- W4313591390 hasAuthorship W4313591390A5047911401 @default.
- W4313591390 hasAuthorship W4313591390A5050110511 @default.
- W4313591390 hasBestOaLocation W43135913901 @default.
- W4313591390 hasConcept C101433766 @default.
- W4313591390 hasConcept C108583219 @default.
- W4313591390 hasConcept C119857082 @default.
- W4313591390 hasConcept C138496976 @default.
- W4313591390 hasConcept C142724271 @default.
- W4313591390 hasConcept C154945302 @default.
- W4313591390 hasConcept C15744967 @default.
- W4313591390 hasConcept C160735492 @default.
- W4313591390 hasConcept C17744445 @default.
- W4313591390 hasConcept C199539241 @default.
- W4313591390 hasConcept C20387591 @default.
- W4313591390 hasConcept C2522767166 @default.
- W4313591390 hasConcept C41008148 @default.
- W4313591390 hasConcept C71924100 @default.
- W4313591390 hasConceptScore W4313591390C101433766 @default.
- W4313591390 hasConceptScore W4313591390C108583219 @default.
- W4313591390 hasConceptScore W4313591390C119857082 @default.
- W4313591390 hasConceptScore W4313591390C138496976 @default.
- W4313591390 hasConceptScore W4313591390C142724271 @default.
- W4313591390 hasConceptScore W4313591390C154945302 @default.
- W4313591390 hasConceptScore W4313591390C15744967 @default.
- W4313591390 hasConceptScore W4313591390C160735492 @default.
- W4313591390 hasConceptScore W4313591390C17744445 @default.
- W4313591390 hasConceptScore W4313591390C199539241 @default.
- W4313591390 hasConceptScore W4313591390C20387591 @default.
- W4313591390 hasConceptScore W4313591390C2522767166 @default.
- W4313591390 hasConceptScore W4313591390C41008148 @default.
- W4313591390 hasConceptScore W4313591390C71924100 @default.
- W4313591390 hasLocation W43135913901 @default.
- W4313591390 hasOpenAccess W4313591390 @default.
- W4313591390 hasPrimaryLocation W43135913901 @default.
- W4313591390 hasRelatedWork W3014300295 @default.
- W4313591390 hasRelatedWork W3164822677 @default.
- W4313591390 hasRelatedWork W4223943233 @default.
- W4313591390 hasRelatedWork W4225161397 @default.
- W4313591390 hasRelatedWork W4250304930 @default.
- W4313591390 hasRelatedWork W4312200629 @default.
- W4313591390 hasRelatedWork W4360585206 @default.
- W4313591390 hasRelatedWork W4364306694 @default.
- W4313591390 hasRelatedWork W4380075502 @default.
- W4313591390 hasRelatedWork W4380086463 @default.
- W4313591390 isParatext "false" @default.
- W4313591390 isRetracted "false" @default.
- W4313591390 workType "article" @default.