Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313592065> ?p ?o ?g. }
- W4313592065 endingPage "044010" @default.
- W4313592065 startingPage "044010" @default.
- W4313592065 abstract "Abstract An acoustic emission (AE) approach for non-destructive evaluation of structures has been developed over the last two decades. In complex structures, one of the limitations of AE testing is to find the location of the AE source. Time of flight and wave velocity are typically employed to localise AE sources. However, complex rail structures generate multiple wave modes travelling at varying speeds, making localisation difficult. In this paper, the challenge of localisation has been split into two parts: (a) identification of the AE source zone, i.e. head, web or foot, and (b) identification of location along the length of the rail. AE events are simulated using a pencil lead break (PLB) as the source. Three models including an artificial neural network and 1D and 2D convolutional neural networks (CNNs) are trained and tested using AE signals generated by PLB sources. The accuracy of zone identification is reported as 94.79% when using the 2DCNN algorithm. For location classification it is also found that 2DCNN performed best with 73.12%, 79.37% and 67.50% accuracy of localising the AE source along the length in the head, web and foot, respectively. For AE signal generation from actual damage in a rail, a bending test on an inverted damaged rail section was then performed with loads of 100 kN, 150 kN and 200 kN. For all loads, the 2DCNN model resulted in accurate prediction of the zone of the AE source, and it accurately predicted the AE source location along the length for the loads of higher intensity (150 kN, 200 kN). It is envisaged that the deep learning approach presented in this research work will be helpful in developing a real-time monitoring system for rail inspection based on AE." @default.
- W4313592065 created "2023-01-06" @default.
- W4313592065 creator A5021095639 @default.
- W4313592065 creator A5021537319 @default.
- W4313592065 date "2023-01-24" @default.
- W4313592065 modified "2023-09-30" @default.
- W4313592065 title "Acoustic emission source localisation for structural health monitoring of rail sections based on a deep learning approach" @default.
- W4313592065 cites W1538336692 @default.
- W4313592065 cites W1567083796 @default.
- W4313592065 cites W2001130098 @default.
- W4313592065 cites W2006269603 @default.
- W4313592065 cites W2015688155 @default.
- W4313592065 cites W2030319875 @default.
- W4313592065 cites W2046420741 @default.
- W4313592065 cites W2047147168 @default.
- W4313592065 cites W2050283192 @default.
- W4313592065 cites W2057842719 @default.
- W4313592065 cites W2188107595 @default.
- W4313592065 cites W2483371656 @default.
- W4313592065 cites W2551101845 @default.
- W4313592065 cites W2560192453 @default.
- W4313592065 cites W2606329139 @default.
- W4313592065 cites W2888192387 @default.
- W4313592065 cites W2941147690 @default.
- W4313592065 cites W2945697543 @default.
- W4313592065 cites W3028845928 @default.
- W4313592065 cites W3035919332 @default.
- W4313592065 cites W3043655531 @default.
- W4313592065 cites W3119267593 @default.
- W4313592065 cites W3129337631 @default.
- W4313592065 cites W3158285527 @default.
- W4313592065 cites W3199566865 @default.
- W4313592065 cites W3209124788 @default.
- W4313592065 cites W3214974721 @default.
- W4313592065 cites W4205349656 @default.
- W4313592065 cites W4224240855 @default.
- W4313592065 cites W4226077772 @default.
- W4313592065 cites W4308919870 @default.
- W4313592065 doi "https://doi.org/10.1088/1361-6501/acb002" @default.
- W4313592065 hasPublicationYear "2023" @default.
- W4313592065 type Work @default.
- W4313592065 citedByCount "4" @default.
- W4313592065 countsByYear W43135920652023 @default.
- W4313592065 crossrefType "journal-article" @default.
- W4313592065 hasAuthorship W4313592065A5021095639 @default.
- W4313592065 hasAuthorship W4313592065A5021537319 @default.
- W4313592065 hasBestOaLocation W43135920651 @default.
- W4313592065 hasConcept C116834253 @default.
- W4313592065 hasConcept C121332964 @default.
- W4313592065 hasConcept C127313418 @default.
- W4313592065 hasConcept C153180895 @default.
- W4313592065 hasConcept C154945302 @default.
- W4313592065 hasConcept C174598085 @default.
- W4313592065 hasConcept C199360897 @default.
- W4313592065 hasConcept C24890656 @default.
- W4313592065 hasConcept C2777904410 @default.
- W4313592065 hasConcept C2779843651 @default.
- W4313592065 hasConcept C3018397939 @default.
- W4313592065 hasConcept C41008148 @default.
- W4313592065 hasConcept C44154836 @default.
- W4313592065 hasConcept C50644808 @default.
- W4313592065 hasConcept C59822182 @default.
- W4313592065 hasConcept C81363708 @default.
- W4313592065 hasConcept C86803240 @default.
- W4313592065 hasConceptScore W4313592065C116834253 @default.
- W4313592065 hasConceptScore W4313592065C121332964 @default.
- W4313592065 hasConceptScore W4313592065C127313418 @default.
- W4313592065 hasConceptScore W4313592065C153180895 @default.
- W4313592065 hasConceptScore W4313592065C154945302 @default.
- W4313592065 hasConceptScore W4313592065C174598085 @default.
- W4313592065 hasConceptScore W4313592065C199360897 @default.
- W4313592065 hasConceptScore W4313592065C24890656 @default.
- W4313592065 hasConceptScore W4313592065C2777904410 @default.
- W4313592065 hasConceptScore W4313592065C2779843651 @default.
- W4313592065 hasConceptScore W4313592065C3018397939 @default.
- W4313592065 hasConceptScore W4313592065C41008148 @default.
- W4313592065 hasConceptScore W4313592065C44154836 @default.
- W4313592065 hasConceptScore W4313592065C50644808 @default.
- W4313592065 hasConceptScore W4313592065C59822182 @default.
- W4313592065 hasConceptScore W4313592065C81363708 @default.
- W4313592065 hasConceptScore W4313592065C86803240 @default.
- W4313592065 hasIssue "4" @default.
- W4313592065 hasLocation W43135920651 @default.
- W4313592065 hasOpenAccess W4313592065 @default.
- W4313592065 hasPrimaryLocation W43135920651 @default.
- W4313592065 hasRelatedWork W2054591023 @default.
- W4313592065 hasRelatedWork W2091753474 @default.
- W4313592065 hasRelatedWork W2392996891 @default.
- W4313592065 hasRelatedWork W2521062615 @default.
- W4313592065 hasRelatedWork W2767651786 @default.
- W4313592065 hasRelatedWork W2912288872 @default.
- W4313592065 hasRelatedWork W3016958897 @default.
- W4313592065 hasRelatedWork W3181746755 @default.
- W4313592065 hasRelatedWork W4283379348 @default.
- W4313592065 hasRelatedWork W564581980 @default.
- W4313592065 hasVolume "34" @default.
- W4313592065 isParatext "false" @default.
- W4313592065 isRetracted "false" @default.