Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313592103> ?p ?o ?g. }
- W4313592103 endingPage "19" @default.
- W4313592103 startingPage "1" @default.
- W4313592103 abstract "In this study, an adaptive neural network fuzzy inference system (ANFIS) is employed to obtain a model demonstrating a cold rolling effect on the forming limits of sheet metals. Artificial intelligence-based methods require valid datasets for training and testing designed neural networks. In this regard, comprehensive experiments are conducted to achieve different thickness reductions in cold rolling for 304L sheet metals. The effect of cold rolling on the uniaxial tensile curves is determined experimentally. In addition, metallography and tensile tests are performed to determine the stretch in grains due to cold rolling. Moreover, experimental FLDs are obtained using the hemisphere punch test. The experimental data are further utilized to train and test the ANFIS. Subsequently, the model is used to predict variations of FLD for cold rolling thickness reduction. It is shown that with extremely lower computational cost in comparison to the experimental method, ANFIS can qualitatively predict the dependency of forming limits on the cold rolling thickness reduction." @default.
- W4313592103 created "2023-01-06" @default.
- W4313592103 creator A5034654778 @default.
- W4313592103 creator A5069152891 @default.
- W4313592103 creator A5076380704 @default.
- W4313592103 creator A5076425537 @default.
- W4313592103 date "2023-01-03" @default.
- W4313592103 modified "2023-09-27" @default.
- W4313592103 title "The capability of coupled fuzzy logic and adaptive neural network in the formability prediction of steel sheets" @default.
- W4313592103 cites W1963922136 @default.
- W4313592103 cites W1967707825 @default.
- W4313592103 cites W1974397267 @default.
- W4313592103 cites W1978115348 @default.
- W4313592103 cites W1980830492 @default.
- W4313592103 cites W1992231128 @default.
- W4313592103 cites W1992984730 @default.
- W4313592103 cites W1995579544 @default.
- W4313592103 cites W2017011345 @default.
- W4313592103 cites W2018412509 @default.
- W4313592103 cites W2019207321 @default.
- W4313592103 cites W2019794442 @default.
- W4313592103 cites W2022338852 @default.
- W4313592103 cites W2038397269 @default.
- W4313592103 cites W2048353286 @default.
- W4313592103 cites W2055235736 @default.
- W4313592103 cites W2065645571 @default.
- W4313592103 cites W2070335645 @default.
- W4313592103 cites W2070514331 @default.
- W4313592103 cites W2071017453 @default.
- W4313592103 cites W2074732249 @default.
- W4313592103 cites W2079325629 @default.
- W4313592103 cites W2142620248 @default.
- W4313592103 cites W2149968671 @default.
- W4313592103 cites W2244852286 @default.
- W4313592103 cites W2531653841 @default.
- W4313592103 cites W2559951252 @default.
- W4313592103 cites W2570076965 @default.
- W4313592103 cites W2752501875 @default.
- W4313592103 cites W2774786783 @default.
- W4313592103 cites W2790440747 @default.
- W4313592103 cites W2791961580 @default.
- W4313592103 cites W2885191951 @default.
- W4313592103 cites W2897751953 @default.
- W4313592103 cites W2899041254 @default.
- W4313592103 cites W2938007503 @default.
- W4313592103 cites W2953919270 @default.
- W4313592103 cites W2954889142 @default.
- W4313592103 cites W2959268930 @default.
- W4313592103 cites W2973122608 @default.
- W4313592103 cites W2981050564 @default.
- W4313592103 cites W2994359595 @default.
- W4313592103 cites W2995518945 @default.
- W4313592103 cites W2999335277 @default.
- W4313592103 cites W3007574934 @default.
- W4313592103 cites W3038958271 @default.
- W4313592103 cites W3119068443 @default.
- W4313592103 cites W3134395635 @default.
- W4313592103 cites W3136974407 @default.
- W4313592103 cites W3154122104 @default.
- W4313592103 cites W3177519268 @default.
- W4313592103 cites W3211281409 @default.
- W4313592103 cites W3215238825 @default.
- W4313592103 cites W3215694718 @default.
- W4313592103 cites W4200390852 @default.
- W4313592103 cites W4200391968 @default.
- W4313592103 cites W4200495849 @default.
- W4313592103 cites W4283026782 @default.
- W4313592103 cites W4286267556 @default.
- W4313592103 cites W4296741939 @default.
- W4313592103 cites W4297322456 @default.
- W4313592103 cites W4308039697 @default.
- W4313592103 cites W4310011077 @default.
- W4313592103 cites W4311138513 @default.
- W4313592103 doi "https://doi.org/10.1080/17455030.2022.2162154" @default.
- W4313592103 hasPublicationYear "2023" @default.
- W4313592103 type Work @default.
- W4313592103 citedByCount "1" @default.
- W4313592103 countsByYear W43135921032023 @default.
- W4313592103 crossrefType "journal-article" @default.
- W4313592103 hasAuthorship W4313592103A5034654778 @default.
- W4313592103 hasAuthorship W4313592103A5069152891 @default.
- W4313592103 hasAuthorship W4313592103A5076380704 @default.
- W4313592103 hasAuthorship W4313592103A5076425537 @default.
- W4313592103 hasConcept C111335779 @default.
- W4313592103 hasConcept C112950240 @default.
- W4313592103 hasConcept C127413603 @default.
- W4313592103 hasConcept C154945302 @default.
- W4313592103 hasConcept C159985019 @default.
- W4313592103 hasConcept C186108316 @default.
- W4313592103 hasConcept C192562407 @default.
- W4313592103 hasConcept C195975749 @default.
- W4313592103 hasConcept C2524010 @default.
- W4313592103 hasConcept C33923547 @default.
- W4313592103 hasConcept C41008148 @default.
- W4313592103 hasConcept C50644808 @default.
- W4313592103 hasConcept C58166 @default.
- W4313592103 hasConcept C66938386 @default.
- W4313592103 hasConcept C79127381 @default.